Example #1
0
 def test_run_cat1(self):
     history_id = self.gi.histories.create_history(
         name="test_run_cat1 history")["id"]
     dataset1_id = self._test_dataset(history_id, contents="1 2 3")
     dataset2_id = self._test_dataset(history_id, contents="4 5 6")
     dataset3_id = self._test_dataset(history_id, contents="7 8 9")
     tool_inputs = inputs().set("input1", dataset(dataset1_id)).set(
         "queries",
         repeat().instance(inputs().set(
             "input2", dataset(dataset2_id))).instance(inputs().set(
                 "input2", dataset(dataset3_id))))
     tool_output = self.gi.tools.run_tool(history_id=history_id,
                                          tool_id="cat1",
                                          tool_inputs=tool_inputs)
     self.assertEqual(len(tool_output["outputs"]), 1)
 def test_run_cat1(self):
     history_id = self.gi.histories.create_history(name="test_run_cat1 history")["id"]
     dataset1_id = self._test_dataset(history_id, contents="1 2 3")
     dataset2_id = self._test_dataset(history_id, contents="4 5 6")
     dataset3_id = self._test_dataset(history_id, contents="7 8 9")
     tool_inputs = (
         inputs()
         .set("input1", dataset(dataset1_id))
         .set(
             "queries",
             repeat()
             .instance(inputs().set("input2", dataset(dataset2_id)))
             .instance(inputs().set("input2", dataset(dataset3_id))),
         )
     )
     tool_output = self.gi.tools.run_tool(history_id=history_id, tool_id="cat1", tool_inputs=tool_inputs)
     self.assertEqual(len(tool_output["outputs"]), 1)
Example #3
0
 def test_wait_for_job(self):
     tool_inputs = inputs().set("input1", dataset(self.dataset_id))
     tool_output = self.gi.tools.run_tool(history_id=self.history_id,
                                          tool_id="cat1",
                                          tool_inputs=tool_inputs)
     job_id = tool_output['jobs'][0]['id']
     job = self.gi.jobs.wait_for_job(job_id)
     self.assertEqual(job['state'], 'ok')
Example #4
0
def test_conditional():
    # Build up example inputs for random_lines1
    as_dict = inputs().set("num_lines", 5).set(
        "input", dataset("encoded1")).set(
            "seed_source",
            conditional().set("seed_source_selector",
                              "set_seed").set("seed", "asdf")).to_dict()
    assert as_dict["num_lines"] == 5
    assert as_dict["input"]["src"] == "hda"
    assert as_dict["input"]["id"] == "encoded1"
    assert as_dict["seed_source|seed_source_selector"] == "set_seed"
    assert as_dict["seed_source|seed"] == "asdf"
Example #5
0
def test_repeat():
    # Build up inputs for cat1
    as_dict = inputs().set("input1", dataset("encoded1")).set(
        "queries",
        repeat().instance(inputs().set_dataset_param(
            "input2", "encoded2")).instance(inputs().set_dataset_param(
                "input2", "encoded3"))).to_dict()
    assert as_dict["input1"]["src"] == "hda"
    assert as_dict["input1"]["id"] == "encoded1"
    assert as_dict["queries_0|input2"]["src"] == "hda"
    assert as_dict["queries_0|input2"]["id"] == "encoded2"
    assert as_dict["queries_1|input2"]["src"] == "hda"
    assert as_dict["queries_1|input2"]["id"] == "encoded3"
 def test_run_random_lines(self):
     # Run second test case from randomlines.xml
     history_id = self.gi.histories.create_history(name="test_run_random_lines history")["id"]
     with open(get_abspath(os.path.join("data", "1.bed"))) as f:
         contents = f.read()
     dataset_id = self._test_dataset(history_id, contents=contents)
     tool_inputs = (
         inputs()
         .set("num_lines", "1")
         .set("input", dataset(dataset_id))
         .set("seed_source", conditional().set("seed_source_selector", "set_seed").set("seed", "asdf"))
     )
     tool_output = self.gi.tools.run_tool(history_id=history_id, tool_id="random_lines1", tool_inputs=tool_inputs)
     self.assertEqual(len(tool_output["outputs"]), 1)
Example #7
0
def export_output(request, project, gi, file_id, tool_id="export_sbw"):
    """Export data in galaxy MetaGenSense output directory"""
    """add the name of project on file name"""

    data = gi.datasets.show_dataset(dataset_id=file_id)
    hist_id = data['history_id']

    myinputs = inputs().set("prefix", project).set("input", dataset(file_id))

    tool_outputs = gi.tools.run_tool(history_id=hist_id, tool_id=tool_id, tool_inputs=myinputs)

    if tool_outputs:
        messages.warning(request, "Export is in progress, your file will be available: " + project + '_' + data['name'])
    return redirect('galaxy_history_detail', history_id=hist_id)
Example #8
0
 def test_run_random_lines(self):
     # Run second test case from randomlines.xml
     history_id = self.gi.histories.create_history(
         name="test_run_random_lines history")["id"]
     with open(test_util.get_abspath(os.path.join("data", "1.bed"))) as f:
         contents = f.read()
     dataset_id = self._test_dataset(history_id, contents=contents)
     tool_inputs = inputs().set("num_lines", "1").set(
         "input", dataset(dataset_id)).set(
             "seed_source",
             conditional().set("seed_source_selector",
                               "set_seed").set("seed", "asdf"))
     tool_output = self.gi.tools.run_tool(history_id=history_id,
                                          tool_id="random_lines1",
                                          tool_inputs=tool_inputs)
     self.assertEqual(len(tool_output["outputs"]), 1)
def test_repeat():
    # Build up inputs for cat1
    as_dict = inputs().set(
        "input1", dataset("encoded1")
    ).set(
        "queries", repeat().instance(
            inputs().set_dataset_param("input2", "encoded2")
        ).instance(
            inputs().set_dataset_param("input2", "encoded3")
        )
    ).to_dict()
    assert as_dict["input1"]["src"] == "hda"
    assert as_dict["input1"]["id"] == "encoded1"
    assert as_dict["queries_0|input2"]["src"] == "hda"
    assert as_dict["queries_0|input2"]["id"] == "encoded2"
    assert as_dict["queries_1|input2"]["src"] == "hda"
    assert as_dict["queries_1|input2"]["id"] == "encoded3"
def test_conditional():
    # Build up example inputs for random_lines1
    as_dict = inputs().set(
        "num_lines", 5
    ).set(
        "input", dataset("encoded1")
    ).set(
        "seed_source", conditional().set(
            "seed_source_selector", "set_seed"
        ).set(
            "seed", "asdf"
        )
    ).to_dict()
    assert as_dict["num_lines"] == 5
    assert as_dict["input"]["src"] == "hda"
    assert as_dict["input"]["id"] == "encoded1"
    assert as_dict["seed_source|seed_source_selector"] == "set_seed"
    assert as_dict["seed_source|seed"] == "asdf"
Example #11
0
def create_run_definition(dataset_id, tool_dict):
    '''define jobs for galaxy'''
    filtering_runs = [{
        'tool':
        tool_dict['paired_fastq_filtering'],
        'inputs':
        OrderedDict([('A', dataset(dataset_id['fq1'])),
                     ('B', dataset(dataset_id['fq2']))])
    }, {
        'tool':
        tool_dict['paired_fastq_filtering'],
        'inputs':
        OrderedDict([('A', dataset(dataset_id['fq1'])),
                     ('B', dataset(dataset_id['fq2'])),
                     ('sampling',
                      conditional().set('sequence_sampling',
                                        'true').set('sample_size', 500))])
    }, {
        'tool':
        tool_dict['single_fastq_filtering'],
        'inputs':
        OrderedDict([('A', dataset(dataset_id['fq1'])),
                     ('sampling',
                      conditional().set('sequence_sampling',
                                        'true').set('sample_size', 500))])
    }]
    affixer_runs = [{
        'tool':
        tool_dict['fasta_affixer'],
        'inputs':
        OrderedDict([('input', dataset(dataset_id['input_fasta'])),
                     ('prefix', "PREFIX"), ('suffix', 'SUFFIX')])
    }, {
        'tool':
        tool_dict['names_affixer'],
        'inputs':
        OrderedDict([('input', dataset(dataset_id['fq1'])),
                     ('prefix', "PREFIX"), ('suffix', 'SUFFIX')])
    }]
    various_utils = [{
        'tool':
        tool_dict['sampler'],
        'inputs':
        OrderedDict([('input', dataset(dataset_id['input_fasta'])),
                     ('number', 500)])
    }, {
        'tool':
        tool_dict['fasta_interlacer'],
        'inputs':
        OrderedDict([('A', dataset(dataset_id['fastaA'])),
                     ('B', dataset(dataset_id['fastaB']))])
    }, {
        'tool':
        tool_dict['rename_sequences'],
        'inputs':
        OrderedDict([('input', dataset(dataset_id['fastaA'])),
                     ('prefix_length', 3)])
    }, {
        'tool':
        tool_dict['chip_seq_ratio'],
        'inputs':
        OrderedDict([('ChipFile', dataset(dataset_id['chip_fasta'])),
                     ('InputFile', dataset(dataset_id['input_fasta'])),
                     ('ContigFile', dataset(dataset_id['clustering_contigs']))
                     ])
    }, {
        'tool':
        tool_dict['pair_scan'],
        'inputs':
        OrderedDict([('fasta_input', dataset(dataset_id['interlaced_fasta']))])
    }]

    dante_runs = [{
        'tool':
        tool_dict['dante'],
        'inputs':
        OrderedDict([('input_type', conditional().set(
            'input_type_selector',
            'fasta').set('input_sequences',
                         dataset(dataset_id['gepy_genome'])))])
    }, {
        'tool':
        tool_dict['dante'],
        'inputs':
        OrderedDict([
            ('input_type',
             conditional().set('input_type_selector',
                               'aln').set('input_sequences',
                                          dataset(dataset_id['aln_contigs'])))
        ])
    }, {
        'tool':
        tool_dict['domain_filter'],
        'inputs':
        OrderedDict([('DomGff', dataset(dataset_id['gff_dante']))])
    }, {
        'tool':
        tool_dict['gff_to_tabular'],
        'inputs':
        OrderedDict([('inputgff', dataset(dataset_id['gff_dante']))])
    }, {
        'tool':
        tool_dict['gff_extract'],
        'inputs':
        OrderedDict([('input_dna', dataset(dataset_id['gepy_genome'])),
                     ('domains_gff', dataset(dataset_id['gff_dante']))])
    }, {
        'tool':
        tool_dict['gff_summary'],
        'inputs':
        OrderedDict([('group', "Name"),
                     ('inputgff', dataset(dataset_id['gff_dante']))])
    }]

    repex_runs = [{
        'tool':
        tool_dict['repeatexplorer2'],
        'inputs':
        OrderedDict([('FastaFile', dataset(dataset_id['LAS_interlaced_fasta']))
                     ])
    }, {
        'tool':
        tool_dict['tarean'],
        'inputs':
        OrderedDict([('FastaFile', dataset(dataset_id['LAS_interlaced_fasta']))
                     ])
    }]

    runs = affixer_runs + filtering_runs + dante_runs + various_utils + repex_runs
    return runs