Example #1
0
def test_tau_max_from_actuators(value, threshold):
    ocp = prepare_test_ocp(with_actuator=True)
    x = [DM.zeros((6, 1)), DM.zeros((6, 1))]
    u = [DM.ones((3, 1)) * value, DM.ones((3, 1)) * value]
    penalty_type = ConstraintFcn.TORQUE_MAX_FROM_ACTUATORS
    penalty = Constraint(penalty_type)
    if threshold and threshold < 0:
        with pytest.raises(
                ValueError,
                match="min_torque cannot be negative in tau_max_from_actuators"
        ):
            penalty_type.value[0](penalty,
                                  PenaltyNodes(ocp, ocp.nlp[0], [], x, u, []),
                                  min_torque=threshold),
    else:
        penalty_type.value[0](penalty,
                              PenaltyNodes(ocp, ocp.nlp[0], [], x, u, []),
                              min_torque=threshold)

    val = []
    for i in range(len(ocp.nlp[0].g[0])):
        val.append(ocp.nlp[0].g[0][i]["val"])
    for res in val:
        if threshold:
            np.testing.assert_almost_equal(
                res,
                np.repeat([value + threshold, value - threshold],
                          3)[:, np.newaxis])
        else:
            np.testing.assert_almost_equal(
                res,
                np.repeat([value + 5, value - 10], 3)[:, np.newaxis])
Example #2
0
def test_penalty_custom(penalty_origin, value):
    def custom(pn, mult):
        my_values = DM.zeros((12, 1)) + pn.x[0] * mult
        return my_values

    ocp = prepare_test_ocp()
    t = [0]
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.CUSTOM

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type, index=0)
    else:
        penalty = Constraint(penalty_type, index=0)

    penalty.custom_function = custom
    mult = 2
    penalty_type.value[0](penalty,
                          PenaltyNodes(ocp, ocp.nlp[0], t, x, [], []),
                          mult=mult)

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(res, np.array([[value * mult]] * 12))

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0]] * 12))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0]] * 12))
Example #3
0
def test_penalty_non_slipping(value):
    ocp = prepare_test_ocp(with_contact=True)
    t = [0]
    x = [DM.ones((8, 1)) * value]
    u = [DM.ones((4, 1)) * value]
    penalty_type = ConstraintFcn.NON_SLIPPING
    penalty = Constraint(penalty_type)
    penalty_type.value[0](
        penalty,
        PenaltyNodes(ocp, ocp.nlp[0], t, x, u, []),
        tangential_component_idx=0,
        normal_component_idx=1,
        static_friction_coefficient=2,
    )

    res = []
    for i in range(len(ocp.nlp[0].g[0])):
        res.append(ocp.nlp[0].g[0][i]["val"])

    if value == 0.1:
        expected = [[64662.56185612, 64849.5027121], [0, 0], [np.inf, np.inf]]
    elif value == -10:
        expected = [[856066.90177734, 857384.05177395], [0, 0],
                    [np.inf, np.inf]]
    else:
        raise RuntimeError("Test not ready")

    np.testing.assert_almost_equal(
        np.concatenate(res)[:, 0], np.array(expected[0]))

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([expected[1]]).T)
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([expected[2]]).T)
Example #4
0
def test_penalty_track_segment_with_custom_rt(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_SEGMENT_WITH_CUSTOM_RT

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    penalty_type.value[0](penalty,
                          PenaltyNodes(ocp, ocp.nlp[0], [], x, [], []),
                          segment="ground",
                          rt_idx=0)

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    expected = np.array([[0], [0.1], [0]])
    if value == -10:
        expected = np.array([[3.1415927], [0.575222], [3.1415927]])

    np.testing.assert_almost_equal(
        res,
        expected,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0], [0], [0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0], [0], [0]]))
Example #5
0
def test_penalty_track_marker_with_segment_axis(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_MARKER_WITH_SEGMENT_AXIS

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    penalty_type.value[0](penalty,
                          PenaltyNodes(ocp, ocp.nlp[0], [], x, [], []),
                          marker="m0",
                          segment="ground",
                          axis=Axis.X)

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[0]]),
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0]]))
Example #6
0
def test_penalty_minimize_com_position(value, penalty_origin):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    if "TRACK_COM_POSITION" in penalty_origin._member_names_:
        penalty_type = penalty_origin.TRACK_COM_POSITION
    else:
        penalty_type = penalty_origin.MINIMIZE_COM_POSITION

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    expected = np.array([[0.05], [0.05], [0.05]])
    if value == -10:
        expected = np.array([[-5], [0.05], [-5]])

    np.testing.assert_almost_equal(res, expected)

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array(0))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array(0))
Example #7
0
def test_penalty_minimize_markers_velocity(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_MARKERS_VELOCITY
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    if value == 0.1:
        np.testing.assert_almost_equal(
            ocp.nlp[0].J[0][6]["val"],
            np.array([
                [-0.00499167],
                [0],
                [-0.0497502],
            ]),
        )
    else:
        np.testing.assert_almost_equal(
            ocp.nlp[0].J[0][6]["val"],
            np.array([
                [2.7201056],
                [0],
                [-4.1953576],
            ]),
        )
Example #8
0
def test_penalty_track_all_controls(penalty_origin, value):
    ocp = prepare_test_ocp(with_muscles=True)
    u = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_ALL_CONTROLS

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type, target=np.ones((8, 1)) * value)
    else:
        penalty = Constraint(penalty_type, target=np.ones((8, 1)) * value)

    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [6], [], u,
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[value, value, value, value, value, value, value, value]]).T,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].min,
            np.array([[0.0, 0, 0, 0, 0, 0, 0, 0]]).T)
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].max,
            np.array([[0.0, 0, 0, 0, 0, 0, 0, 0]]).T)
Example #9
0
def test_penalty_track_state(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_STATE
    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type, target=np.ones((8, 1)) * value)
    else:
        penalty = Constraint(penalty_type, target=np.ones((8, 1)) * value)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [1], x, [],
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    expected = np.array([[value]] * 8)

    np.testing.assert_almost_equal(
        res,
        expected,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0]] * 8))
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].max,
            np.array([[0]] * 8),
        )
Example #10
0
def test_penalty_minimize_contact_forces(penalty_origin, value):
    ocp = prepare_test_ocp(with_contact=True)
    x = [DM.ones((8, 1)) * value]
    u = [DM.ones((4, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_CONTACT_FORCES
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, u, []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    if value == 0.1:
        np.testing.assert_almost_equal(
            res,
            np.array([[-9.6680105, 127.2360329, 5.0905995]]).T,
        )
    else:
        np.testing.assert_almost_equal(
            res,
            np.array([[25.6627161, 462.7973306, -94.0182191]]).T,
        )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0.0]]).T)
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0.0]]).T)
Example #11
0
def test_penalty_proportional_state(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.PROPORTIONAL_STATE

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    penalty_type.value[0](penalty,
                          PenaltyNodes(ocp, ocp.nlp[0], [], x, [], []),
                          which_var="states",
                          first_dof=0,
                          second_dof=1,
                          coef=2)

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[-value]]),
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0]]))
Example #12
0
def test_penalty_track_torque(penalty_origin, value):
    ocp = prepare_test_ocp()
    u = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_TORQUE

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type, target=np.ones((4, 1)) * value)
    else:
        penalty = Constraint(penalty_type, target=np.ones((4, 1)) * value)

    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [4], [], u,
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[value, value, value, value]]).T,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.zeros((4, 1)))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.zeros((4, 1)))
Example #13
0
def test_penalty_minimize_predicted_com_height(value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = ObjectiveFcn.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    res = np.array(0.0501274 if value == 0.1 else -3.72579)
    np.testing.assert_almost_equal(ocp.nlp[0].J[0][0]["val"], res)
Example #14
0
def test_penalty_minimize_time(penalty_origin, value):
    ocp = prepare_test_ocp()
    penalty_type = penalty_origin.MINIMIZE_TIME
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], [], [],
                                                []))

    np.testing.assert_almost_equal(
        ocp.nlp[0].J[0][0]["val"],
        np.array(1),
    )
Example #15
0
def test_penalty_minimize_state(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_STATE
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    np.testing.assert_almost_equal(
        ocp.nlp[0].J[0][0]["val"],
        np.array([[value]] * 8),
    )
Example #16
0
def test_penalty_minimize_markers_displacement(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_MARKERS_DISPLACEMENT
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    np.testing.assert_almost_equal(
        ocp.nlp[0].J[0],
        np.array([]),
    )
Example #17
0
def test_penalty_time_constraint(value):
    ocp = prepare_test_ocp()
    penalty_type = ConstraintFcn.TIME_CONSTRAINT
    penalty = Constraint(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], [], [],
                                                []))
    res = ocp.nlp[0].g[0]

    np.testing.assert_almost_equal(
        res,
        np.array([]),
    )
Example #18
0
def test_penalty_track_markers(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.SUPERIMPOSE_MARKERS

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    penalty_type.value[0](penalty,
                          PenaltyNodes(ocp, ocp.nlp[0], [], x, [], []),
                          first_marker="m0",
                          second_marker="m1")

    expected = np.array([
        [-0.8951707],
        [0],
        [1.0948376],
    ])
    if value == -10:
        expected = np.array([
            [1.3830926],
            [0],
            [-0.2950504],
        ])

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        expected,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].min,
            np.array([[0]] * 3),
        )
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].max,
            np.array([[0]] * 3),
        )
Example #19
0
def test_penalty_track_markers_velocity(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.TRACK_MARKERS_VELOCITY

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type, target=np.ones((3, 7, 1)) * value)
    else:
        penalty = Constraint(penalty_type, target=np.ones((3, 7, 1)) * value)

    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [3], x, [],
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][6]["val"]
    else:
        res = ocp.nlp[0].g[0][6]["val"]

    if value == 0.1:
        np.testing.assert_almost_equal(
            res,
            np.array([
                [-0.00499167],
                [0],
                [-0.0497502],
            ]),
        )
    else:
        np.testing.assert_almost_equal(
            res,
            np.array([
                [2.7201056],
                [0],
                [-4.1953576],
            ]),
        )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].min,
            np.array([[0]] * 3),
        )
        np.testing.assert_almost_equal(
            ocp.nlp[0].g[0][0]["bounds"].max,
            np.array([[0]] * 3),
        )
Example #20
0
def test_penalty_custom_with_bounds_failing_max_bound(value):
    def custom_with_bounds(pn):
        my_values = DM.zeros((12, 1)) + x[0]
        return -10, my_values, 10

    ocp = prepare_test_ocp()
    t = [0]
    x = [DM.ones((12, 1)) * value]

    penalty_type = ConstraintFcn.CUSTOM
    penalty = Constraint(penalty_type)

    penalty.max_bound = 0
    penalty.custom_function = custom_with_bounds

    with pytest.raises(RuntimeError):
        penalty_type.value[0](penalty,
                              PenaltyNodes(ocp, ocp.nlp[0], t, x, [], []))
Example #21
0
def test_penalty_minimize_qddot(penalty_origin, value):
    ocp = prepare_test_ocp()
    t = [0, 1]
    x = [DM.ones((8, 1)) * value, DM.ones((8, 1)) * value]
    u = [DM.ones((4, 1)) * value]
    if penalty_origin == ObjectiveFcn.Mayer or penalty_origin == ConstraintFcn:
        with pytest.raises(AttributeError, match="MINIMIZE_QDDOT"):
            _ = penalty_origin.MINIMIZE_QDDOT
        return
    else:
        penalty_type = penalty_origin.MINIMIZE_QDDOT
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], t, x, u, []))

    np.testing.assert_almost_equal(
        ocp.nlp[0].J[0][0]["val"].T,
        [[value, -9.81 + value, value, value]],
    )
Example #22
0
def test_penalty_contact_force_inequality(penalty_origin, value, direction):
    ocp = prepare_test_ocp(with_contact=True)
    x = [DM.ones((8, 1)) * value]
    u = [DM.ones((4, 1)) * value]

    if direction == "GREATER_THAN":
        min_bound = 1
        max_bound = np.inf
        if value == 0.1:
            expected = [-9.6680105, 1.0, np.inf]
        elif value == -10:
            expected = [25.6627161, 1.0, np.inf]
        else:
            raise RuntimeError("Wrong test")
    elif direction == "LESSER_THAN":
        min_bound = -np.inf
        max_bound = 1
        if value == 0.1:
            expected = [-9.6680105, -np.inf, 1.0]
        elif value == -10:
            expected = [25.6627161, -np.inf, 1.0]
        else:
            raise RuntimeError("Wrong test")
    else:
        raise RuntimeError("Wrong test")

    penalty_type = penalty_origin.CONTACT_FORCE
    penalty = Constraint(penalty_type,
                         min_bound=min_bound,
                         max_bound=max_bound)
    penalty_type.value[0](
        penalty,
        PenaltyNodes(ocp, ocp.nlp[0], [], x, u, []),
        contact_force_idx=0,
    )
    res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(res, np.array([[expected[0]]]))

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[expected[1]]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[expected[2]]]))
Example #23
0
def test_penalty_custom_with_bounds(value):
    def custom_with_bounds(pn):
        my_values = DM.zeros((12, 1)) + pn.x[0]
        return -10, my_values, 10

    ocp = prepare_test_ocp()
    t = [0]
    x = [DM.ones((12, 1)) * value]

    penalty_type = ConstraintFcn.CUSTOM
    penalty = Constraint(penalty_type)

    penalty.custom_function = custom_with_bounds
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], t, x, [], []))

    res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(res, np.array([[value]] * 12))
    np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                   np.array([[-10]] * 12))
    np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                   np.array([[10]] * 12))
Example #24
0
def test_penalty_track_contact_forces(penalty_origin, value):
    ocp = prepare_test_ocp(with_contact=True)
    x = [DM.ones((8, 1)) * value]
    u = [DM.ones((4, 1)) * value]
    penalty_type = penalty_origin.TRACK_CONTACT_FORCES

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type,
                            target=np.ones((1, 1)) * value,
                            index=0)
    else:
        penalty = Constraint(penalty_type,
                             target=np.ones((1, 1)) * value,
                             index=0)

    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [7], x, u,
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    if value == 0.1:
        np.testing.assert_almost_equal(
            res,
            np.array([[-9.6680105]]),
        )
    else:
        np.testing.assert_almost_equal(
            res,
            np.array([[25.6627161]]),
        )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0.0]]).T)
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0.0]]).T)
Example #25
0
def test_penalty_minimize_torque_derivative(value):
    ocp = prepare_test_ocp()
    u = [DM.ones((12, 1)) * value, DM.ones((12, 1)) * value * 3]
    penalty_type = ObjectiveFcn.Lagrange.MINIMIZE_TORQUE_DERIVATIVE
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], [], u,
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[value * 2, value * 2, value * 2, value * 2]]).T,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0.0, 0, 0, 0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0.0, 0, 0, 0]]))
Example #26
0
def test_penalty_minimize_muscles_control(penalty_origin, value):
    ocp = prepare_test_ocp(with_muscles=True)
    u = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_MUSCLES_CONTROL
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], [], u,
                                                []))

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array([[value, value, value, value, value, value]]).T,
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0.0, 0, 0, 0, 0, 0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0.0, 0, 0, 0, 0, 0]]))
Example #27
0
def test_penalty_proportional_control(penalty_origin, value):
    ocp = prepare_test_ocp()
    u = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.PROPORTIONAL_CONTROL

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        penalty = Objective(penalty_type)
    else:
        penalty = Constraint(penalty_type)

    first = 0
    second = 1
    coef = 2
    penalty_type.value[0](
        penalty,
        PenaltyNodes(ocp, ocp.nlp[0], [], [], u, []),
        which_var="controls",
        first_dof=first,
        second_dof=second,
        coef=coef,
    )

    if isinstance(penalty_type, (ObjectiveFcn.Lagrange, ObjectiveFcn.Mayer)):
        res = ocp.nlp[0].J[0][0]["val"]
    else:
        res = ocp.nlp[0].g[0][0]["val"]

    np.testing.assert_almost_equal(
        res,
        np.array(u[0][first] - coef * u[0][second]),
    )

    if isinstance(penalty_type, ConstraintFcn):
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].min,
                                       np.array([[0.0]]))
        np.testing.assert_almost_equal(ocp.nlp[0].g[0][0]["bounds"].max,
                                       np.array([[0.0]]))
Example #28
0
def test_penalty_minimize_markers(penalty_origin, value):
    ocp = prepare_test_ocp()
    x = [DM.ones((12, 1)) * value]
    penalty_type = penalty_origin.MINIMIZE_MARKERS
    penalty = Objective(penalty_type)
    penalty_type.value[0](penalty, PenaltyNodes(ocp, ocp.nlp[0], [], x, [],
                                                []))

    res = np.array([
        [0.1, 0.99517075, 1.9901749, 1.0950042, 1, 2, 0.49750208],
        [0, 0, 0, 0, 0, 0, 0],
        [0.1, -0.9948376, -1.094671, 0.000166583, 0, 0, -0.0499167],
    ])
    if value == -10:
        res = np.array([
            [-10, -11.3830926, -12.2221642, -10.8390715, 1.0, 2.0, -0.4195358],
            [0, 0, 0, 0, 0, 0, 0],
            [-10, -9.7049496, -10.2489707, -10.5440211, 0, 0, -0.2720106],
        ])

    np.testing.assert_almost_equal(
        ocp.nlp[0].J[0][0]["val"],
        res,
    )