def run_takeout_by_expiry():
    event = TakeoutEvent('NBIX', 1)
    option_type = 'Call'
    option_type_2 = 'Put'
    strike = 1.0
    expiries = [
        dt.date(2018, 4, 20),
        dt.date(2018, 7, 20),
        dt.date(2018, 10, 20),
        dt.date(2019, 1, 20),
        dt.date(2019, 4, 20)
    ]

    # Preliminary Print Statements
    print("Ann. Takeout Prob: {:.1f}%, Premium: {:.1f}%".format(
        event.takeout_prob * 100, event.takeout_premium * 100))

    for expiry in expiries:
        option = Option(option_type, strike, expiry)
        option2 = Option(option_type_2, strike, expiry)

        distribution = event.get_distribution(expiry)

        price = OptionPrice(distribution, option)
        price2 = OptionPrice(distribution, option2)

        straddle = price + price2
        print(
            "T.O. by {:%m/%d/%Y}: {:.1f}%".format(
                expiry,
                distribution.distribution_df.loc["Takeout", "Prob"] * 100),
            "\n" * 0)
        print("Mean Move: {:.1f}%".format(distribution.mean_move * 100))
        print("Straddle: {:.1f}%".format(straddle * 100), "\n" * 1)
Example #2
0
def run3():
    # Define Events
    event1 = TakeoutEvent('CLVS', 1)
    event2 = SysEvt_PresElection('CLVS', .02)
    event3 = SystematicEvent('CLVS', .1, 'Ph3_Data')
    event4 = SystematicEvent('CLVS', .05, 'Investor_Day')
    event5 = SystematicEvent('CLVS', .3, 'FDA_Approval')
    event6 = SystematicEvent('CLVS', .05, 'Q1_Earnings')
    event7 = SystematicEvent('CLVS', .05, 'Q2_Earnings')

    expiry = dt.date(2018, 5, 1)
    events = [event2, event3, event4]
    added_distribution = event1.get_distribution(expiry)
    for event in events:
        added_distribution += event.get_distribution()
    rprint(added_distribution.mean_move)
Example #3
0
def run2():
    expiry = dt.date(2018, 5, 1)
    event1 = TakeoutEvent('CLVS', 1)
    event2 = SysEvt_PresElection('CLVS', .02)
    event3 = SystematicEvent('CLVS', .1, 'Ph3_Data')
    event4 = SystematicEvent('CLVS', .05, 'Investor_Day')
    event5 = SystematicEvent('CLVS', .3, 'FDA Approval')

    distribution1 = event1.get_distribution(expiry)
    distribution2 = event2.get_distribution()
    distribution3 = event3.get_distribution()
    distribution4 = event4.get_distribution()
    distribution5 = event5.get_distribution()

    added_distribution = distribution1 + distribution2 + distribution3 + distribution4 + distribution5
    print(added_distribution)
    print(added_distribution.distribution_df)
    rprint(distribution1.mean_move, distribution2.mean_move, distribution3.mean_move, distribution4.mean_move, distribution5.mean_move, added_distribution.mean_move)
def run():
    if __name__ == "__main__":
        #-------------------PresElection Setup-----------------#
        PresElectionParams = pd.read_csv(
            "/Users/paulwainer/Environments/finance_env/PresElectionParams.csv"
        )
        PresElectionParams.set_index('Stock', inplace=True)

        # Create PresElection Events Dict
        PresElection_Evts = {}
        for stock, move_input in PresElectionParams.itertuples():
            PresElection_Evts[stock] = SysEvt_PresElection(stock, move_input)

        #-------------------Takeout Setup-----------------#
        TakeoutParams = pd.read_csv("TakeoutParams.csv")
        TakeoutParams.set_index('Stock', inplace=True)

        # Create Takeout Events Dict
        Takeout_Evts = {}
        for stock, bucket in TakeoutParams.itertuples():
            Takeout_Evts[stock] = TakeoutEvent(stock, bucket)

        takeout_dict = {}
        for stock, event in Takeout_Evts.items():
            takeout_dict[stock] = (event.takeout_prob, event.takeout_premium)

        takeout_df = pd.DataFrame(takeout_dict).T.round(3)
        takeout_df.rename(columns={0: 'Prob', 1: 'Premium'}, inplace=True)
        takeout_df.rename_axis('Stock', inplace=True)

        evt = SystematicEvent('ZFGN', .20)
        evt2 = Event()
        evt3 = SysEvt_PresElection('GM', .05)
        evt4 = TakeoutEvent('NBIX', 1)

        print("\n\n\nAll Events---\n", Event.instances, "\n")
        print("Systematic Event---\n", SystematicEvent.instances, "\n")
        print("Presidential Election---\n", SysEvt_PresElection.instances,
              "\n")
        print("Takeout Event---\n", TakeoutEvent.instances, "\n")
        print(takeout_df.sort_values('Premium', ascending=False))
Example #5
0
def mc_simulation():
    expiry = dt.date(2018, 12, 1)
    mc_iterations = 10**5
    
    # Define Events
    event1 = TakeoutEvent('CLVS', 1)
    event2 = SysEvt_PresElection('CLVS', .015)
    event3 = Event('CLVS', Distribution(pd.read_csv('CLVS.csv')), 'Ph3_Data')
    event4 = Event('CLVS', .025, 'Investor_Day')
    event5 = Event('CLVS', .15, 'FDA_Approval')
    event6 = Event('CLVS', .15, 'Q1_Earnings')
    event7 = Event('CLVS', .05, 'Q2_Earnings')
    
    events1 = [event6]
    events2 = [event6, event7]
    events3 = [event5, event6, event7]
    events4 = [event1, event5, event6, event7]
    events5 = [event1, event3, event5, event6, event7]
    
    event_groupings = [events1, events2, events3, events4, events5]

    @my_time_decorator
    def get_total_distribution(events):
        mc_simulation = np.zeros(mc_iterations)
        for event in events:
            distribution = event.get_distribution(expiry)
            mc_simulation += distribution.mc_simulation(mc_iterations)
        return mc_simulation


    @my_time_decorator
    def get_option_prices(name, mc_distribution):
        strikes = np.arange(.5, 1.55, .05)
        prices = []
        for strike in strikes:
            if strike >= 1.0:
                option_type = 'Call'
            else:
                option_type = 'Put'    
            option = Option(option_type, strike, expiry)
            prices.append(OptionPriceMC(option, mc_distribution))
        
        prices_info = {'Strikes': strikes, 'Prices': prices}
        prices_df = pd.DataFrame(prices_info).round(3)
        prices_df.set_index('Strikes', inplace=True)
        #prices_df.rename_axis(name, inplace=True)
        return prices_df

    @my_time_decorator
    def event_groupings_df(event_groupings):
        i = 0
        for grouping in event_groupings:
            mc_distribution = get_total_distribution(grouping)
            prices = get_option_prices('Prices', mc_distribution)

            if event_groupings.index(grouping) == 0:
                prices_df = prices
            else:
                #prices_df.join(prices.loc[:, 'Prices'])
                prices_df = pd.merge(prices_df, prices, left_index=True, right_index=True)
            
            #graph_MC_distribution(mc_distribution)
            
            i += 1
        return prices_df

    event_df = event_groupings_df(event_groupings)
    print(event_df)