Example #1
0
    def __getitem__(self, idx):

        ys, meta, _, xs = self.mix[idx]

        xs = torch.from_numpy(xs)
        ys = torch.from_numpy(ys)

        X1s = torchaudio.functional.spectrogram(waveform=torch.transpose(
            xs[0, :, :], 0, 1),
                                                pad=0,
                                                window=torch.hann_window(400),
                                                n_fft=512,
                                                hop_length=256,
                                                win_length=400,
                                                power=None,
                                                normalized=False)

        X2s = torchaudio.functional.spectrogram(waveform=torch.transpose(
            xs[1, :, :], 0, 1),
                                                pad=0,
                                                window=torch.hann_window(400),
                                                n_fft=512,
                                                hop_length=256,
                                                win_length=400,
                                                power=None,
                                                normalized=False)

        Ys = torchaudio.functional.spectrogram(waveform=torch.transpose(
            ys, 0, 1),
                                               pad=0,
                                               window=torch.hann_window(400),
                                               n_fft=512,
                                               hop_length=256,
                                               win_length=400,
                                               power=None,
                                               normalized=False)

        M1s = (X1s[0, :, :, 0]**2 +
               X1s[0, :, :, 1]**2) / (X1s[0, :, :, 0]**2 + X1s[0, :, :, 1]**2 +
                                      X2s[0, :, :, 0]**2 + X2s[0, :, :, 1]**2)
        M2s = (X1s[1, :, :, 0]**2 +
               X1s[1, :, :, 1]**2) / (X1s[1, :, :, 0]**2 + X1s[1, :, :, 1]**2 +
                                      X2s[1, :, :, 0]**2 + X2s[1, :, :, 1]**2)
        Ms = torch.cat(
            (torch.unsqueeze(M1s, dim=0), torch.unsqueeze(M2s, dim=0)), 0)

        tau = BIRD.getTDOA(meta)[0]

        return Ys, Ms, tau
Example #2
0
    def __getitem__(self, idx):

        ys, meta, _, _ = self.mix[idx]

        ys = torch.from_numpy(ys)

        Ys = torchaudio.functional.spectrogram(waveform=torch.transpose(
            ys, 0, 1),
                                               pad=0,
                                               window=torch.hann_window(400),
                                               n_fft=512,
                                               hop_length=256,
                                               win_length=400,
                                               power=None,
                                               normalized=False)

        taus = BIRD.getTDOA(meta)
        taus = torch.tensor(taus[0:2])

        return Ys, taus