Example #1
0
    def setUp(self):
        self.k = 4

        p = np.zeros(10)
        q = np.zeros(10)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[4] = 0.01
        q[6] = 0.1

        self.bdc = BirthDeathChain(q, p)

        self.mu = self.bdc.stationary_distribution()
        self.T = self.bdc.transition_matrix_sparse()
        """Test matrix-vector product against spectral decomposition"""
        R, D, L = rdl_decomposition(self.T, k=self.k)
        self.L = L
        self.R = R
        self.ts = timescales(self.T, k=self.k)
        self.times = np.array([1, 5, 10, 20, 100])

        ev = np.diagonal(D)
        self.ev_t = ev[np.newaxis, :]**self.times[:, np.newaxis]
        """Observable"""
        obs1 = np.zeros(10)
        obs1[0] = 1
        obs1[1] = 1
        self.obs = obs1
        """Initial distribution"""
        w0 = np.zeros(10)
        w0[0:4] = 0.25
        self.p0 = w0
Example #2
0
    def setUp(self):
        self.k = 4

        p = np.zeros(10)
        q = np.zeros(10)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[4] = 0.01
        q[6] = 0.1

        self.bdc = BirthDeathChain(q, p)

        self.mu = self.bdc.stationary_distribution()
        self.T = self.bdc.transition_matrix_sparse()
        R, D, L = rdl_decomposition(self.T, k=self.k)
        self.L = L
        self.R = R
        self.ts = timescales(self.T, k=self.k)
        self.times = np.array([1, 5, 10, 20, 100])

        ev = np.diagonal(D)
        self.ev_t = ev[np.newaxis, :]**self.times[:, np.newaxis]

        obs1 = np.zeros(10)
        obs1[0] = 1
        obs1[1] = 1
        obs2 = np.zeros(10)
        obs2[8] = 1
        obs2[9] = 1

        self.obs1 = obs1
        self.obs2 = obs2
        self.one_vec = np.ones(10)
Example #3
0
    def setUp(self):
        """Store state of the rng"""
        self.state = np.random.mtrand.get_state()
        """Reseed the rng to enforce 'deterministic' behavior"""
        np.random.mtrand.seed(42)
        """Meta-stable birth-death chain"""
        b = 2
        q = np.zeros(7)
        p = np.zeros(7)
        q[1:] = 0.5
        p[0:-1] = 0.5
        q[2] = 1.0 - 10**(-b)
        q[4] = 10**(-b)
        p[2] = 10**(-b)
        p[4] = 1.0 - 10**(-b)

        bdc = BirthDeathChain(q, p)
        P = bdc.transition_matrix()
        self.dtrajs = [generate_traj(P, 10000, start=0)]
        self.tau = 1
        """Estimate MSM"""
        self.C_MSM = cmatrix(self.dtrajs, self.tau, sliding=True).toarray()
        self.lcc_MSM = largest_connected_set(self.C_MSM)
        self.Ccc_MSM = connected_cmatrix(self.C_MSM, lcc=self.lcc_MSM)
        self.P_MSM = tmatrix(self.Ccc_MSM, reversible=True)
        self.mu_MSM = statdist(self.P_MSM)
        self.k = 3
        self.ts = timescales(self.P_MSM, k=self.k + 1, tau=self.tau)[1:]
Example #4
0
    def setUp(self):
        p = np.zeros(100)
        q = np.zeros(100)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[49] = 0.01
        q[51] = 0.1

        self.bdc = BirthDeathChain(q, p)
Example #5
0
    def setUp(self):
        p = np.zeros(10)
        q = np.zeros(10)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[4] = 0.01
        q[6] = 0.1

        self.bdc = BirthDeathChain(q, p)
        self.T = self.bdc.transition_matrix()
        self.mu = self.bdc.stationary_distribution()

        self.A = create_rate_matrix()
Example #6
0
    def setUp(self):
        self.dim = 100
        self.k = 10
        """Set up meta-stable birth-death chain"""
        p = np.zeros(self.dim)
        p[0:-1] = 0.5

        q = np.zeros(self.dim)
        q[1:] = 0.5

        p[self.dim / 2 - 1] = 0.001
        q[self.dim / 2 + 1] = 0.001

        self.bdc = BirthDeathChain(q, p)
Example #7
0
    def setUp(self):
        self.k = 4

        p = np.zeros(10)
        q = np.zeros(10)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[4] = 0.01
        q[6] = 0.1

        self.bdc = BirthDeathChain(q, p)

        self.mu = self.bdc.stationary_distribution()
        self.T = self.bdc.transition_matrix_sparse()
        R, D, L = rdl_decomposition(self.T, k=self.k)
        self.L = L
        self.R = R
        self.ts = timescales(self.T, k=self.k)
        self.times = np.array([1, 5, 10, 20])

        ev = np.diagonal(D)
        self.ev_t = ev[np.newaxis, :] ** self.times[:, np.newaxis]

        self.tau = 7.5

        """Observables"""
        obs1 = np.zeros(10)
        obs1[0] = 1
        obs1[1] = 1
        obs2 = np.zeros(10)
        obs2[8] = 1
        obs2[9] = 1

        self.obs1 = obs1
        self.obs2 = obs2

        """Initial vector for relaxation"""
        w0 = np.zeros(10)
        w0[0:4] = 0.25
        self.p0 = w0
    def setUp(self):
        """Store state of the rng"""
        self.state = np.random.mtrand.get_state()
        """Reseed the rng to enforce 'deterministic' behavior"""
        np.random.mtrand.seed(42)
        """Meta-stable birth-death chain"""
        b = 2
        q = np.zeros(7)
        p = np.zeros(7)
        q[1:] = 0.5
        p[0:-1] = 0.5
        q[2] = 1.0 - 10**(-b)
        q[4] = 10**(-b)
        p[2] = 10**(-b)
        p[4] = 1.0 - 10**(-b)

        bdc = BirthDeathChain(q, p)
        P = bdc.transition_matrix()
        dtraj = generate_traj(P, 10000, start=0)
        tau = 1
        """Estimate MSM"""
        C_MSM = cmatrix(dtraj, tau)
        lcc_MSM = largest_connected_set(C_MSM)
        Ccc_MSM = connected_cmatrix(C_MSM, lcc=lcc_MSM)
        P_MSM = tmatrix(Ccc_MSM)
        mu_MSM = statdist(P_MSM)
        """Meta-stable sets"""
        A = [0, 1, 2]
        B = [4, 5, 6]

        w_MSM = np.zeros((2, mu_MSM.shape[0]))
        w_MSM[0, A] = mu_MSM[A] / mu_MSM[A].sum()
        w_MSM[1, B] = mu_MSM[B] / mu_MSM[B].sum()

        K = 10
        P_MSM_dense = P_MSM.toarray()

        p_MSM = np.zeros((K, 2))
        w_MSM_k = 1.0 * w_MSM
        for k in range(1, K):
            w_MSM_k = np.dot(w_MSM_k, P_MSM_dense)
            p_MSM[k, 0] = w_MSM_k[0, A].sum()
            p_MSM[k, 1] = w_MSM_k[1, B].sum()
        """Assume that sets are equal, A(\tau)=A(k \tau) for all k"""
        w_MD = 1.0 * w_MSM
        p_MD = np.zeros((K, 2))
        eps_MD = np.zeros((K, 2))
        p_MSM[0, :] = 1.0
        p_MD[0, :] = 1.0
        eps_MD[0, :] = 0.0
        for k in range(1, K):
            """Build MSM at lagtime k*tau"""
            C_MD = cmatrix(dtraj, k * tau, sliding=True) / (k * tau)
            lcc_MD = largest_connected_set(C_MD)
            Ccc_MD = connected_cmatrix(C_MD, lcc=lcc_MD)
            c_MD = Ccc_MD.sum(axis=1)
            P_MD = tmatrix(Ccc_MD).toarray()
            w_MD_k = np.dot(w_MD, P_MD)
            """Set A"""
            prob_MD = w_MD_k[0, A].sum()
            c = c_MD[A].sum()
            p_MD[k, 0] = prob_MD
            eps_MD[k, 0] = np.sqrt(k * (prob_MD - prob_MD**2) / c)
            """Set B"""
            prob_MD = w_MD_k[1, B].sum()
            c = c_MD[B].sum()
            p_MD[k, 1] = prob_MD
            eps_MD[k, 1] = np.sqrt(k * (prob_MD - prob_MD**2) / c)
        """Input"""
        self.P_MSM = P_MSM
        self.lcc_MSM = lcc_MSM
        self.dtraj = dtraj
        self.tau = tau
        self.K = K
        self.A = A
        self.B = B
        """Expected results"""
        self.p_MSM = p_MSM
        self.p_MD = p_MD
        self.eps_MD = eps_MD