def lwma_next_work_required(block_list): # T target_solvetime = 10 * 60 # N For T=600, 300, 150 use approximately N=60, 90, 120 average_window = 60 # Define a k that will be used to get a proper average after weighting the solvetimes. k = int(average_window * (average_window + 1) * target_solvetime // 2) height = block_list[-1]['height'] pow_limit = net['pow_limit'] # New coins should just give away first N blocks before using this algorithm. if height < average_window: return ser.compact_from_uint256(pow_limit) average_target = 0 prev_timestamp = block_list[-average_window - 1]['time'] sum_weighted_solvetimes = 0 solvetime_weight = 0 # Loop through N most recent blocks. for i in range(height + 1 - average_window, height + 1): block = block_list[i - height - 1] # Prevent solvetimes from being negative in a safe way. It must be done like this. # In particular, do not attempt anything like if(solvetime < 0) {solvetime=0;} # The +1 ensures new coins do not calculate nextTarget = 0. this_timestamp = block[ 'time'] if block['time'] > prev_timestamp else prev_timestamp + 1 # A 6*T limit will prevent large drops in difficulty from long solvetimes. solve_time = min(6 * target_solvetime, this_timestamp - prev_timestamp) # The following is part of "preventing negative solvetimes". prev_timestamp = this_timestamp # Give linearly higher weight to more recent solvetimes. solvetime_weight = solvetime_weight + 1 sum_weighted_solvetimes += solve_time * solvetime_weight target = ser.uint256_from_compact(block['nbits']) average_target += target // ( average_window * k ) # Dividing by k here prevents an overflow below. # Desired equation in next line was nextTarget = avgTarget * sumWeightSolvetimes / k # but 1/k was moved to line above to prevent overflow in new coins next_target = sum_weighted_solvetimes * average_target if next_target > pow_limit: print('exceed pow limit') next_target = pow_limit next_nbits = ser.compact_from_uint256(next_target) print('lwma nbits:', hex(next_nbits)) print('difficulty:', difficulty(next_nbits)) return next_nbits
def _check_difficulty_target(self, header): parent = b2lx(header.hashPrevBlock) target = self.get_difficulty_target(parent) if (self.get_height() + 1) % 2016 == 0: end = self.get_timestamp(parent) min, max = (302400, 4838400) for i in range(2015): parent = self._get_parent(parent) start = self.get_timestamp(parent) difference = end - start if difference < min: difference = min elif difference > max: difference = max target = compact_from_uint256(long(uint256_from_compact(target) * (float(difference) / (60 * 60 * 24 * 14)))) if self.testnet and header.nTime - self.get_timestamp(parent) >= 1200: return target if uint256_from_compact(header.nBits) > uint256_from_compact(target): raise CheckBlockHeaderError("Target difficutly is incorrect") return target
def _check_difficulty_target(self, header): parent = b2lx(header.hashPrevBlock) target = self.get_difficulty_target(parent) if (self.get_height() + 1) % 2016 == 0: end = self.get_timestamp(parent) min, max = (302400, 4838400) for i in range(2015): parent = self._get_parent(parent) start = self.get_timestamp(parent) difference = end - start if difference < min: difference = min elif difference > max: difference = max target = compact_from_uint256( long( uint256_from_compact(target) * (float(difference) / (60 * 60 * 24 * 14)))) if self.testnet and header.nTime - self.get_timestamp(parent) >= 1200: return target if uint256_from_compact(header.nBits) > uint256_from_compact(target): raise CheckBlockHeaderError("Target difficutly is incorrect") return target
def get_next_work_required(block_list): global net fork_height = net['fork_height'] adjust_interval = 72 last_height = block_list[-1]['height'] height_span = last_height + 1 - fork_height if height_span % adjust_interval != 0: print('Not time to adjust target.') return block_list[-1]['nbits'] target_time_span = 72 * 10 * 60 retarget_factor = 2 real_time_span = block_list[-1]['time'] - block_list[-adjust_interval][ 'time'] adjusted_time_span = real_time_span if adjusted_time_span < target_time_span // retarget_factor: adjusted_time_span = target_time_span // retarget_factor if adjusted_time_span > target_time_span * retarget_factor: adjusted_time_span = target_time_span * retarget_factor print('adjusted time span: %s, real time span: %s' % (adjusted_time_span, real_time_span)) pow_limit = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff last_target = ser.uint256_from_compact(block_list[-1]['nbits']) next_target = last_target * adjusted_time_span // target_time_span if next_target > pow_limit: print('exceed pow limit') next_target = pow_limit next_nbits = ser.compact_from_uint256(next_target) print('original nbits:', hex(next_nbits)) print('difficulty:', difficulty(next_nbits)) return next_nbits