def timeseries(client, dataset): # create ts = TimeSeries('Human EEG') assert not ts.exists dataset.add(ts) assert ts.exists assert ts in dataset assert ts.type == 'TimeSeries' assert ts.name.startswith( 'Human EEG') #starts with bc duplicate names are appended ts2 = client.get(ts.id) assert ts2.id == ts.id assert ts2.name == ts.name assert ts2.type == 'TimeSeries' del ts2 # provide to other tests yield ts # streaming credentials cred = ts.streaming_credentials() assert cred # remove dataset.remove(ts) assert not ts.exists assert ts not in dataset
def timeseries(client, dataset): # create ts = TimeSeries('Human EEG') assert not ts.exists dataset.add(ts) assert ts.exists assert ts in dataset assert ts.type == 'TimeSeries' assert ts.name == 'Human EEG' ts2 = client.get(ts.id) assert ts2.id == ts.id assert ts2.name == ts.name assert ts2.type == 'TimeSeries' del ts2 # provide to other tests yield ts # update ts: change name ts.name = 'Monkey EEG' ts.update() ts2 = client.get(ts.id) assert ts2.id == ts.id assert ts2.name == ts.name assert ts2.type == 'TimeSeries' # streaming credentials cred = ts.streaming_credentials() assert cred # remove dataset.remove(ts) assert not ts.exists assert ts not in dataset
def test_search(client, dataset): # create ts = TimeSeries('Human EEG') assert not ts.exists dataset.add(ts) assert ts.exists assert ts in dataset assert ts.type == 'TimeSeries' assert ts.name == 'Human EEG' ts2 = client.get(ts.id) assert ts2.id == ts.id assert ts2.name == ts.name assert ts2.type == 'TimeSeries' del ts2 t = Tabular('Some tabular data') assert not t.exists assert t.schema is None # create dataset.add(t) assert t.exists assert t.schema is None schema = [ TabularSchemaColumn(name='', display_name='index', datatype='Integer', primary_key=True, internal=True), TabularSchemaColumn(name='', display_name='email', datatype='String', primary_key=False, internal=False), ] s = TabularSchema(name="schema", column_schema=schema) t.set_schema(s) assert t.name == 'Some tabular data' assert t.exists a = t.get_schema() assert a.exists a = client.search('email')
def timeseries(client, dataset): # create ts = TimeSeries("Human EEG") assert not ts.exists dataset.add(ts) assert ts.exists assert ts in dataset assert ts.type == "TimeSeries" assert ts.name.startswith( "Human EEG") # starts with bc duplicate names are appended ts2 = client.get(ts.id) assert ts2.id == ts.id assert ts2.name == ts.name assert ts2.type == "TimeSeries" del ts2 # provide to other tests yield ts # remove dataset.remove(ts) assert not ts.exists assert ts not in dataset
def test_stream_upload(use_dev, client, dataset): # can only run against dev server :-( if not use_dev: return # generate data freq = 100 df = generate_dataframe(minutes=1, freq=100) # create timeseries ts = TimeSeries('My Test TimeSeries') dataset.add(ts) assert ts.exists print(ts) # create channels channels = [TimeSeriesChannel(c, rate=freq) for c in df.columns] ts.add_channels(*channels) for ch in channels: assert ch.exists assert ch.rate == freq assert ch.name in df.columns print("channels =", ts.channels) # stream data up ts.stream_data(df) # wait a bit -- let server write data time.sleep(10) # retrieve data for chunk in ts.get_data_iter(): assert len(chunk) > 0 assert chunk.columns == df.columns assert chunk.index[-1] == df.index[-1] # make sure channel times were updated for ch in ts.channels: assert ch.start_datetime == df.index[0] assert ch.end_datetime == df.index[-1]
def timeseries2(client, dataset): ts = TimeSeries("Animal EEG") dataset.add(ts) assert ts.exists yield ts dataset.remove(ts)