def test_compound(self): s = t.amount.mean() r = compute(s, data) assert isinstance(r, float) expr = cos(s) ** 2 + sin(s) ** 2 result = compute(expr, data) expected = math.cos(r) ** 2 + math.sin(r) ** 2 assert result == expected
def test_compound(self): s = t.amount.mean() r = compute(s, data) assert isinstance(r, float) expr = cos(s)**2 + sin(s)**2 result = compute(expr, data) expected = math.cos(r)**2 + math.sin(r)**2 assert result == expected
def distance(lat1, lon1, lat2, lon2, R=3959): # http://andrew.hedges.name/experiments/haversine/ dlon = radians(lon2 - lon1) dlat = radians(lat2 - lat1) a = sin(dlat / 2.0) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2.0) ** 2 return R * 2 * atan2(sqrt(a), sqrt(1 - a))
def myfunc(x): return myother((cos(x) + sin(x)) ** 2 / math.pi)
def myfunc(x): return (cos(x) + sin(x)) ** 2 / math.pi
def myfunc(x): return myother((cos(x) + sin(x))**2 / math.pi)
def myfunc(x): return (cos(x) + sin(x))**2 / math.pi
def test_cos(self): a = blaze.array([0, math.pi/6, math.pi/3, 0.5*math.pi, math.pi, 1.5*math.pi, 2*math.pi]) b = blaze.array([1, 0.5*blaze.sqrt(3), 0.5, 0, -1, 0, 1]) assert_allclose(blaze.cos(a), b, rtol=1e-15, atol=1e-15) assert_allclose(blaze.cos(-a), b, rtol=1e-15, atol=1e-15)