Example #1
0
    def compute_metrics(self, data, preds):
        em = 0
        hyps, refs = [], []
        utt_hyps, utt_refs = [], []
        for ex in data:
            p = preds[ex['id']]
            gsql = ex['g_query_recov'].lower().split()
            psql = p['query'].lower().split()
            refs.append([gsql])
            hyps.append(psql)
            em += psql == gsql

            utt_hyps.append(p['utt_toks'])
            utt_refs.append([ex['g_question_toks']])
        metrics = {
            'em':
            em / len(data),
            'bleu':
            corpus_bleu(refs,
                        hyps,
                        smoothing_function=SmoothingFunction().method3),
            'utt_bleu':
            corpus_bleu(utt_refs,
                        utt_hyps,
                        smoothing_function=SmoothingFunction().method3),
        }
        if not self.training:
            metrics.update(self.compute_official_eval(data, preds))
        else:
            metrics['official_em'] = metrics['em']
        return metrics
Example #2
0
 def compute_metrics(self, data, preds):
     em = 0
     hyps, refs = [], []
     for ex in data:
         if ex['id'] not in preds and self.training:
             continue
         p = preds[ex['id']]
         gsql = ex['query'].lower().split()
         psql = p['query'].lower().split()
         refs.append([gsql])
         hyps.append(psql)
         em += psql == gsql
     metrics = {
         'em':
         em / len(data),
         'bleu':
         corpus_bleu(refs,
                     hyps,
                     smoothing_function=SmoothingFunction().method3),
     }
     if not self.training:
         metrics.update(self.compute_official_eval(data, preds))
     else:
         metrics['official_em'] = metrics['em']
     return metrics
Example #3
0
    def compute_metrics(self, data, preds):
        em = 0
        utt_hyps, utt_refs = [], []
        generated = dataset.Dataset()
        for ex in data:
            p = preds[ex['id']]
            utt_hyps.append(p['utt_toks'])
            utt_refs.append([ex['g_question_toks']])

            # make new example
            db_id = ex['db_id']
            db = self.conv.database_schemas[db_id]
            question_toks = p['utt_toks']
            query_context = preprocess_nl2sql.SQLDataset.build_contexts(
                question_toks, db, self.bert_tokenizer)

            if 'g_sql' not in ex:
                ex['g_sql'] = self.conv.build_sql(ex['query'], db_id)

            new = dict(
                id=ex['id'],
                question=ex['question'],
                db_id=db_id,
                g_question_toks=question_toks,
                query=ex['query'],
                g_values=ex['g_values'],
                g_sql=ex['g_sql'],
                value_context=[self.bert_tokenizer.cls_token] + question_toks +
                [self.bert_tokenizer.sep_token],
                query_context=query_context,
                invalid=False,
                cands_query=preprocess_nl2sql.SQLDataset.make_column_cands(
                    query_context),
            )
            new['cands_query'], new[
                'cands_value'] = preprocess_nl2sql.SQLDataset.make_cands(
                    new, self.nl2sql.sql_vocab)
            generated.append(new)

        metrics = {
            'utt_bleu':
            corpus_bleu(utt_refs,
                        utt_hyps,
                        smoothing_function=SmoothingFunction().method3),
        }
        if not self.training:
            with torch.no_grad():
                self.nl2sql.eval()
                preds = self.nl2sql.run_pred(generated,
                                             self.nl2sql.args,
                                             verbose=True,
                                             desc='cycle_pred')
            metrics.update(self.nl2sql.compute_official_eval(generated, preds))
        return metrics
Example #4
0
def evaluate(test_generations, extral_reference, del_map):
    bleu_score = 0.0
    for ind, w in enumerate(test_generations):
        gen = []
        end = False
        for i in w:
            if i == 2:
                end = True
            if not end and i != 0:
                gen.append(index2word[i])

        reference = [[i.strip() for i in s.split()]
                     for s in extral_reference[ind]]
        replaced_gen = []
        for w in gen:
            if w in del_map[ind]:
                replaced_gen.extend(del_map[ind][w].split())
            else:
                replaced_gen.append(w)
        '''
        print("gen : ",gen)

        for i in reference:
            print("ref : ",i)
        print("\n")
        '''
        if len(replaced_gen) <= 4:
            bleu = sentence_bleu(
                reference,
                replaced_gen,
                smoothing_function=SmoothingFunction().method2,
                weights=(0.5, 0.5))
        else:
            bleu = sentence_bleu(
                reference,
                replaced_gen,
                smoothing_function=SmoothingFunction().method2)
        bleu_score += bleu
    bleu_score = bleu_score / len(test_generations)
    return bleu_score
Example #5
0
def expert_policy(batch_generation, extral_reference, del_map):
    batch_target = []
    for ind, w in enumerate(batch_generation):
        if ind >= 1:
            break
        gen = []
        end = False
        for i in w:
            if i == 2:
                end = True
            if not end and i != 0:
                gen.append(index2word[i])

        reference = [[i.strip() for i in s.split()]
                     for s in extral_reference[ind]]
        for s in reference:
            s.insert(0, "@start@")
            s.append("@end@")
        replaced_gen = []
        for w in gen:
            if w in del_map[ind]:
                replaced_gen.extend(del_map[ind][w].split())
            else:
                replaced_gen.append(w)
        replaced_gen.insert(0, "@start@")
        available_words = set()
        for sent in extral_reference[ind]:
            for word in sent.split():
                available_words.add(word.strip())
        available_words.add("@end@")
        target = replaced_gen[:1]
        while ("@end@" not in target and len(target) < 79):
            best_score = 0
            best_action = ""

            for action in available_words:
                temp_target = target[:]
                temp_target.append(action)

                while len(temp_target) < 5:
                    temp_target.insert(0, "@start@")

                bleu = sentence_bleu(
                    reference,
                    temp_target,
                    smoothing_function=SmoothingFunction().method2,
                    weights=(0.2, 0.2, 0.2, 0.2, 0.2))
                if bleu > best_score:
                    best_score = bleu
                    best_action = action

            target.append(best_action)

        replaced_gen.append("@end@")
        bleu = sentence_bleu(reference,
                             target,
                             smoothing_function=SmoothingFunction().method2)
        ref_bleu = sentence_bleu(
            reference,
            replaced_gen,
            smoothing_function=SmoothingFunction().method2)
        print(target)
        print(bleu)
        print(replaced_gen)
        print(ref_bleu)
        for s in reference:
            print(s)
        print("\n")

        best_bleu = bleu
        best_target = target[:]
        if ref_bleu > bleu:
            best_target = replaced_gen[:]
            best_bleu = ref_bleu

        best_target.insert(0, "@start@")
        target_string = ""
        for wo in best_target:
            target_string += wo + " "
        for attr, value in del_map[ind].items():
            if target_string.__contains__(value):
                target_string = target_string.replace(value, attr)
        after_best_target = target_string.strip().split()
        while (len(after_best_target) < max_len):
            after_best_target.append("@null@")
        if len(after_best_target) > max_len:
            print(len(after_best_target))
            print(after_best_target)
            print(best_target)
            print(best_bleu)
            exit(0)
        target_ind = [
            word2index[w] if w in word2index else 0 for w in best_target
        ]

        batch_target.append(target_ind)
    return batch_target
Example #6
0
def single_valid(model, epo):
    B = []
    L = []
    previous = ""
    f = open('result.txt', 'w')
    for n in range(len(v_input_vecotors)):
        #for n in range(1):
        vec = v_input_vecotors[n]
        ref = v_input_reference[n]
        while len(ref) < max_len:
            ref.append(0)
        map = v_input_delmap[n]
        extra_ref = v_input_extra_references[n]
        feed_dict = {model.learning_rate: lr}
        for i in range(len(ref)):
            feed_dict[model.dec_inputs[i]] = [ref[i]]
        for i in range(len(model.enc_inputs)):
            feed_dict[model.enc_inputs[i]] = [vec[i]]
        output = model.session.run(model.dec_outputs[0:len(ref)],
                                   feed_dict=feed_dict)
        result = np.argmax(output, axis=-1).T

        gen = []
        end = False
        for i in result[0]:
            if i == 2:
                end = True
            if not end and i != 0:
                gen.append(index2word[i])
        reference = [[i.strip() for i in s.split()] for s in extra_ref]
        replaced_gen = []
        for w in gen:
            if w in map:
                replaced_gen.extend(map[w].split())
            else:
                replaced_gen.append(w)
        string = ""

        for w in replaced_gen:
            string += w + " "
        bleu = sentence_bleu(reference,
                             replaced_gen,
                             smoothing_function=SmoothingFunction().method2)
        if previous != string:
            previous = string
            #f.write(string +"\n")
            print(string)

            #f.write(str(bleu)+"\n")
            print(bleu)
        '''
        for s in reference:
            sen = ""
            for w in s:
                sen+=w+" "
            f.write(sen+"\n")
            print(sen)
        print("\n")
        f.write("\n")
        '''
        B.append(bleu)
    print("valid bleu score is {}".format(np.mean(B)))