def test_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=output_dim, source_names=["states"],
                      emitter=TestEmitter(name="emitter"), name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
def test_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=output_dim, source_names=["states"],
                      emitter=TestEmitter(name="emitter"), name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size, output_dim), dtype=floatX),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
Example #3
0
def test_integer_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(name="transition",
                                activation=Tanh(),
                                dim=dim,
                                weights_init=Orthogonal())
    generator = SequenceGenerator(LinearReadout(
        readout_dim=readout_dim,
        source_names=["states"],
        emitter=SoftmaxEmitter(name="emitter"),
        feedbacker=LookupFeedback(readout_dim, feedback_dim),
        name="readout"),
                                  transition,
                                  weights_init=IsotropicGaussian(0.01),
                                  biases_init=Constant(0),
                                  name="generator")
    generator.initialize()

    y = tensor.lmatrix('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask],
                                [costs])(numpy.zeros((n_steps, batch_size),
                                                     dtype='int64'),
                                         numpy.ones((n_steps, batch_size),
                                                    dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = generator.generate(iterate=True,
                                                batch_size=batch_size,
                                                n_steps=n_steps)
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=costs.owner.inputs[0].owner.tag.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
def test_integer_sequence_generator():
    # Disclaimer: here we only check shapes, not values.

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=readout_dim, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(readout_dim, feedback_dim),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.initialize()

    y = tensor.lmatrix('y')
    mask = tensor.matrix('mask')
    costs = generator.cost(y, mask)
    assert costs.ndim == 2
    costs_val = theano.function([y, mask], [costs])(
        numpy.zeros((n_steps, batch_size), dtype='int64'),
        numpy.ones((n_steps, batch_size), dtype=floatX))[0]
    assert costs_val.shape == (n_steps, batch_size)

    states, outputs, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=costs.owner.inputs[0].owner.tag.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
Example #5
0
def main(mode, save_path, steps, time_budget, reset):

    num_states = ChainDataset.num_states

    if mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", activation=Tanh(),
                                    dim=dim)
        generator = SequenceGenerator(
            LinearReadout(readout_dim=num_states, source_names=["states"],
                          emitter=SoftmaxEmitter(name="emitter"),
                          feedbacker=LookupFeedback(
                              num_states, feedback_dim, name='feedback'),
                          name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        logger.info("Parameters:\n" +
                    pprint.pformat(
                        [(key, value.get_value().shape) for key, value
                         in Selector(generator).get_params().items()],
                        width=120))
        logger.info("Markov chain entropy: {}".format(
            ChainDataset.entropy))
        logger.info("Expected min error: {}".format(
            -ChainDataset.entropy * seq_len * batch_size))

        if os.path.isfile(save_path) and not reset:
            model = Pylearn2Model.load(save_path)
        else:
            model = Pylearn2Model(generator)

        # Build the cost computation graph.
        # Note: would be probably nicer to make cost part of the model.
        x = tensor.ltensor3('x')
        cost = Pylearn2Cost(model.brick.cost(x[:, :, 0]).sum())

        dataset = ChainDataset(rng, seq_len)
        sgd = SGD(learning_rate=0.0001, cost=cost,
                  batch_size=batch_size, batches_per_iter=10,
                  monitoring_dataset=dataset,
                  monitoring_batch_size=batch_size,
                  monitoring_batches=1,
                  learning_rule=Pylearn2LearningRule(
                      SGDLearningRule(),
                      dict(training_objective=cost.cost)))
        train = Pylearn2Train(dataset, model, algorithm=sgd,
                              save_path=save_path, save_freq=10)
        train.main_loop(time_budget=time_budget)
    elif mode == "sample":
        model = Pylearn2Model.load(save_path)
        generator = model.brick

        sample = ComputationGraph(generator.generate(
            n_steps=steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainDataset.trans_prob))
    else:
        assert False
Example #6
0
def main(mode, save_path, steps, num_batches):
    num_states = MarkovChainDataset.num_states

    if mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", dim=dim,
                                    activation=Tanh())
        generator = SequenceGenerator(
            Readout(readout_dim=num_states, source_names=["states"],
                    emitter=SoftmaxEmitter(name="emitter"),
                    feedback_brick=LookupFeedback(
                        num_states, feedback_dim, name='feedback'),
                    name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        # Give an idea of what's going on.
        logger.info("Parameters:\n" +
                    pprint.pformat(
                        [(key, value.get_value().shape) for key, value
                         in Selector(generator).get_params().items()],
                        width=120))
        logger.info("Markov chain entropy: {}".format(
            MarkovChainDataset.entropy))
        logger.info("Expected min error: {}".format(
            -MarkovChainDataset.entropy * seq_len))

        # Build the cost computation graph.
        x = tensor.lmatrix('data')
        cost = aggregation.mean(generator.cost_matrix(x[:, :]).sum(),
                                x.shape[1])
        cost.name = "sequence_log_likelihood"

        algorithm = GradientDescent(
            cost=cost, params=list(Selector(generator).get_params().values()),
            step_rule=Scale(0.001))
        main_loop = MainLoop(
            algorithm=algorithm,
            data_stream=DataStream(
                MarkovChainDataset(rng, seq_len),
                iteration_scheme=ConstantScheme(batch_size)),
            model=Model(cost),
            extensions=[FinishAfter(after_n_batches=num_batches),
                        TrainingDataMonitoring([cost], prefix="this_step",
                                               after_batch=True),
                        TrainingDataMonitoring([cost], prefix="average",
                                               every_n_batches=100),
                        Checkpoint(save_path, every_n_batches=500),
                        Printing(every_n_batches=100)])
        main_loop.run()
    elif mode == "sample":
        main_loop = cPickle.load(open(save_path, "rb"))
        generator = main_loop.model

        sample = ComputationGraph(generator.generate(
            n_steps=steps, batch_size=1, iterate=True)).get_theano_function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(theano.config.floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               MarkovChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states),
                                  dtype=theano.config.floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, MarkovChainDataset.trans_prob))
    else:
        assert False
Example #7
0
                              transition=transition,
                              name="generator")

generator.weights_init = IsotropicGaussian(0.01)
generator.biases_init = Constant(0.)
generator.push_initialization_config()

generator.transition.biases_init = IsotropicGaussian(0.01, 1)
generator.transition.push_initialization_config()

#steps = 2048
steps = 8
n_samples = 1

sample = ComputationGraph(
    generator.generate(n_steps=steps, batch_size=n_samples, iterate=True))
sample_fn = sample.get_theano_function()

generator.initialize()

#-2
outputs = sample_fn()[0]
print outputs

states = {}
states = generator.transition.apply.outputs

states = {
    name: shared_floatx_zeros((batch_size, hidden_size_recurrent))
    for name in states
}
Example #8
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode",
        choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
        " and `sample` to sample a sequence generated by an"
        " existing one.")
    parser.add_argument("prefix",
                        default="sine",
                        help="The prefix for model, timing and state files")
    parser.add_argument("--steps",
                        type=int,
                        default=100,
                        help="Number of steps to plot")
    args = parser.parse_args()

    dim = 10
    num_states = ChainIterator.num_states
    feedback_dim = 8

    transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim)
    generator = SequenceGenerator(LinearReadout(
        readout_dim=num_states,
        source_names=["states"],
        emitter=SoftmaxEmitter(name="emitter"),
        feedbacker=LookupFeedback(num_states, feedback_dim, name='feedback'),
        name="readout"),
                                  transition,
                                  weights_init=IsotropicGaussian(0.01),
                                  biases_init=Constant(0),
                                  name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" + pprint.pformat(
        [(key, value.get_value().shape)
         for key, value in Selector(generator).get_params().items()],
        width=120))

    if args.mode == "train":
        rng = numpy.random.RandomState(1)
        batch_size = 50

        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()
        logger.debug("transition.weights_init={}".format(
            transition.weights_init))

        cost = generator.cost(tensor.lmatrix('x')).sum()
        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = ChainIterator(rng, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator, args.prefix + "model.npz")

        sample = ComputationGraph(
            generator.generate(n_steps=args.steps, batch_size=1,
                               iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainIterator.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainIterator.trans_prob))
    else:
        assert False
Example #9
0
def main(mode, save_path, num_batches, from_dump):
    if mode == "train":
        # Experiment configuration
        dimension = 100
        readout_dimension = len(char2code)

        # Data processing pipeline
        data_stream = DataStreamMapping(
            mapping=lambda data: tuple(array.T for array in data),
            data_stream=PaddingDataStream(
                BatchDataStream(
                    iteration_scheme=ConstantScheme(10),
                    data_stream=DataStreamMapping(
                        mapping=reverse_words,
                        add_sources=("targets", ),
                        data_stream=DataStreamFilter(
                            predicate=lambda data: len(data[0]) <= 100,
                            data_stream=OneBillionWord(
                                "training", [99],
                                char2code,
                                level="character",
                                preprocess=str.lower).get_default_stream())))))

        # Build the model
        chars = tensor.lmatrix("features")
        chars_mask = tensor.matrix("features_mask")
        targets = tensor.lmatrix("targets")
        targets_mask = tensor.matrix("targets_mask")

        encoder = Bidirectional(GatedRecurrent(dim=dimension,
                                               activation=Tanh()),
                                weights_init=Orthogonal())
        encoder.initialize()
        fork = Fork([
            name
            for name in encoder.prototype.apply.sequences if name != 'mask'
        ],
                    weights_init=IsotropicGaussian(0.1),
                    biases_init=Constant(0))
        fork.input_dim = dimension
        fork.fork_dims = {name: dimension for name in fork.fork_names}
        fork.initialize()
        lookup = LookupTable(readout_dimension,
                             dimension,
                             weights_init=IsotropicGaussian(0.1))
        lookup.initialize()
        transition = Transition(activation=Tanh(),
                                dim=dimension,
                                attended_dim=2 * dimension,
                                name="transition")
        attention = SequenceContentAttention(
            state_names=transition.apply.states,
            match_dim=dimension,
            name="attention")
        readout = LinearReadout(readout_dim=readout_dimension,
                                source_names=["states"],
                                emitter=SoftmaxEmitter(name="emitter"),
                                feedbacker=LookupFeedback(
                                    readout_dimension, dimension),
                                name="readout")
        generator = SequenceGenerator(readout=readout,
                                      transition=transition,
                                      attention=attention,
                                      weights_init=IsotropicGaussian(0.1),
                                      biases_init=Constant(0),
                                      name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()
        bricks = [encoder, fork, lookup, generator]

        # Give an idea of what's going on
        params = Selector(bricks).get_params()
        logger.info("Parameters:\n" +
                    pprint.pformat([(key, value.get_value().shape)
                                    for key, value in params.items()],
                                   width=120))

        # Build the cost computation graph
        batch_cost = generator.cost(
            targets,
            targets_mask,
            attended=encoder.apply(**dict_union(fork.apply(
                lookup.lookup(chars), return_dict=True),
                                                mask=chars_mask)),
            attended_mask=chars_mask).sum()
        batch_size = named_copy(chars.shape[1], "batch_size")
        cost = aggregation.mean(batch_cost, batch_size)
        cost.name = "sequence_log_likelihood"
        logger.info("Cost graph is built")

        # Fetch variables useful for debugging
        max_length = named_copy(chars.shape[0], "max_length")
        cost_per_character = named_copy(
            aggregation.mean(batch_cost, batch_size * max_length),
            "character_log_likelihood")
        cg = ComputationGraph(cost)
        energies = unpack(VariableFilter(application=readout.readout,
                                         name="output")(cg.variables),
                          singleton=True)
        min_energy = named_copy(energies.min(), "min_energy")
        max_energy = named_copy(energies.max(), "max_energy")
        (activations, ) = VariableFilter(
            application=generator.transition.apply,
            name="states")(cg.variables)
        mean_activation = named_copy(activations.mean(), "mean_activation")

        # Define the training algorithm.
        algorithm = GradientDescent(cost=cost,
                                    step_rule=CompositeRule([
                                        GradientClipping(10.0),
                                        SteepestDescent(0.01)
                                    ]))

        observables = [
            cost, min_energy, max_energy, mean_activation, batch_size,
            max_length, cost_per_character, algorithm.total_step_norm,
            algorithm.total_gradient_norm
        ]
        for name, param in params.items():
            observables.append(named_copy(param.norm(2), name + "_norm"))
            observables.append(
                named_copy(algorithm.gradients[param].norm(2),
                           name + "_grad_norm"))

        main_loop = MainLoop(
            model=bricks,
            data_stream=data_stream,
            algorithm=algorithm,
            extensions=([LoadFromDump(from_dump)] if from_dump else []) + [
                Timing(),
                TrainingDataMonitoring(observables, after_every_batch=True),
                TrainingDataMonitoring(
                    observables, prefix="average", every_n_batches=10),
                FinishAfter(after_n_batches=num_batches).add_condition(
                    "after_batch", lambda log: math.isnan(
                        log.current_row.total_gradient_norm)),
                Plot(os.path.basename(save_path),
                     [["average_" + cost.name],
                      ["average_" + cost_per_character.name]],
                     every_n_batches=10),
                SerializeMainLoop(save_path,
                                  every_n_batches=500,
                                  save_separately=["model", "log"]),
                Printing(every_n_batches=1)
            ])
        main_loop.run()
    elif mode == "test":
        with open(save_path, "rb") as source:
            encoder, fork, lookup, generator = dill.load(source)
        logger.info("Model is loaded")
        chars = tensor.lmatrix("features")
        generated = generator.generate(
            n_steps=3 * chars.shape[0],
            batch_size=chars.shape[1],
            attended=encoder.apply(**dict_union(
                fork.apply(lookup.lookup(chars), return_dict=True))),
            attended_mask=tensor.ones(chars.shape))
        sample_function = ComputationGraph(generated).get_theano_function()
        logging.info("Sampling function is compiled")

        while True:
            # Python 2-3 compatibility
            line = input("Enter a sentence\n")
            batch_size = int(input("Enter a number of samples\n"))
            encoded_input = [
                char2code.get(char, char2code["<UNK>"])
                for char in line.lower().strip()
            ]
            encoded_input = ([char2code['<S>']] + encoded_input +
                             [char2code['</S>']])
            print("Encoder input:", encoded_input)
            target = reverse_words((encoded_input, ))[0]
            print("Target: ", target)
            states, samples, glimpses, weights, costs = sample_function(
                numpy.repeat(numpy.array(encoded_input)[:, None],
                             batch_size,
                             axis=1))

            messages = []
            for i in range(samples.shape[1]):
                sample = list(samples[:, i])
                try:
                    true_length = sample.index(char2code['</S>']) + 1
                except ValueError:
                    true_length = len(sample)
                sample = sample[:true_length]
                cost = costs[:true_length, i].sum()
                message = "({})".format(cost)
                message += "".join(code2char[code] for code in sample)
                if sample == target:
                    message += " CORRECT!"
                messages.append((cost, message))
            messages.sort(key=lambda tuple_: -tuple_[0])
            for _, message in messages:
                print(message)
Example #10
0
	if '/generator/readout/emitter/mlp/' in k:
		v = parameters2.pop(k)
		parameters2[k.replace('/generator/readout/emitter/mlp/',
							  '/generator/readout/emitter/gmm_emitter/gmmmlp/mlp/') ] = v

model.set_parameter_values(parameters2)

# import ipdb
# ipdb.set_trace()

#print function([f0, sp, voiced], cost_matrix, updates = extra_updates)(x_tr[0],x_tr[1],x_tr[2])

#generator.generate(n_steps=steps, batch_size=n_samples, iterate=True, **states)

#states = {}
sample = ComputationGraph(generator.generate(n_steps=steps, 
    batch_size=n_samples, iterate=True))
sample_fn = sample.get_theano_function()

outputs_bp = sample_fn()[-2]

for this_sample in range(n_samples):
	print "Iteration: ", this_sample
	outputs = outputs_bp

	sampled_f0 = outputs[:,:,-2]
	sampled_voiced = outputs[:,:,-1]

	print sampled_voiced.mean()
	print sampled_f0.max(), sampled_f0.min()

	outputs = outputs[:,:,:-2]
Example #11
0
    def __init__(self, config, vocab_size):
        context = tensor.imatrix('context')
        context_mask = tensor.imatrix('context_mask')
        answer = tensor.imatrix('answer')
        answer_mask = tensor.imatrix('answer_mask')

        bricks = []

        context = context.dimshuffle(1, 0)
        context_mask = context_mask.dimshuffle(1, 0)
        answer = answer.dimshuffle(1, 0)
        answer_mask = answer_mask.dimshuffle(1, 0)

        context_bag = to_bag(context, vocab_size)

        # Embed questions and context
        embed = LookupTable(vocab_size, config.embed_size, name='embed')
        embed.weights_init = IsotropicGaussian(0.01)
        #embeddings_initial_value = init_embedding_table(filename='embeddings/vocab_embeddings.txt')
        #embed.weights_init = Constant(embeddings_initial_value)

        # Calculate context encoding (concatenate layer1)
        cembed = embed.apply(context)
        clstms, chidden_list = make_bidir_lstm_stack(
            cembed, config.embed_size,
            context_mask.astype(theano.config.floatX), config.ctx_lstm_size,
            config.ctx_skip_connections, 'ctx')
        bricks = bricks + clstms
        if config.ctx_skip_connections:
            cenc_dim = 2 * sum(config.ctx_lstm_size)  #2 : fw & bw
            cenc = tensor.concatenate(chidden_list, axis=2)
        else:
            cenc_dim = 2 * config.ctx_lstm_size[-1]
            cenc = tensor.concatenate(chidden_list[-2:], axis=2)
        cenc.name = 'cenc'

        # Build the encoder bricks
        transition = GatedRecurrent(activation=Tanh(),
                                    dim=config.generator_lstm_size,
                                    name="transition")
        attention = SequenceContentAttention(
            state_names=transition.apply.states,
            attended_dim=cenc_dim,
            match_dim=config.generator_lstm_size,
            name="attention")
        readout = Readout(readout_dim=vocab_size,
                          source_names=[
                              transition.apply.states[0],
                              attention.take_glimpses.outputs[0]
                          ],
                          emitter=MaskedSoftmaxEmitter(context_bag=context_bag,
                                                       name='emitter'),
                          feedback_brick=LookupFeedback(
                              vocab_size, config.feedback_size),
                          name="readout")
        generator = SequenceGenerator(readout=readout,
                                      transition=transition,
                                      attention=attention,
                                      name="generator")

        cost = generator.cost(answer,
                              answer_mask.astype(theano.config.floatX),
                              attended=cenc,
                              attended_mask=context_mask.astype(
                                  theano.config.floatX),
                              name="cost")
        self.predictions = generator.generate(
            n_steps=7,
            batch_size=config.batch_size,
            attended=cenc,
            attended_mask=context_mask.astype(theano.config.floatX),
            iterate=True)[1]

        # Apply dropout
        cg = ComputationGraph([cost])

        if config.w_noise > 0:
            noise_vars = VariableFilter(roles=[WEIGHT])(cg)
            cg = apply_noise(cg, noise_vars, config.w_noise)
        if config.dropout > 0:
            cg = apply_dropout(cg, chidden_list, config.dropout)
        [cost_reg] = cg.outputs

        # Other stuff
        cost.name = 'cost'
        cost_reg.name = 'cost_reg'

        self.sgd_cost = cost_reg
        self.monitor_vars = [[cost_reg]]
        self.monitor_vars_valid = [[cost_reg]]

        # initialize new stuff manually (change!)
        generator.weights_init = IsotropicGaussian(0.01)
        generator.biases_init = Constant(0)
        generator.push_allocation_config()
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        # Initialize bricks
        embed.initialize()
        for brick in bricks:
            brick.weights_init = config.weights_init
            brick.biases_init = config.biases_init
            brick.initialize()
Example #12
0
def main(config): 
	vocab_src, _ = text_to_dict([config['train_src'],
		config['dev_src'], config['test_src']])
	vocab_tgt, cabvo = text_to_dict([config['train_tgt'],
		config['dev_tgt']])

	# Create Theano variables
	logger.info('Creating theano variables')
	source_sentence = tensor.lmatrix('source')
	source_sentence_mask = tensor.matrix('source_mask')
	target_sentence = tensor.lmatrix('target')
	target_sentence_mask = tensor.matrix('target_mask')
	source_sentence.tag.test_value = [[13, 20, 0, 20, 0, 20, 0],
										[1, 4, 8, 4, 8, 4, 8],]
	source_sentence_mask.tag.test_value = [[0, 1, 0, 1, 0, 1, 0],
											[1, 0, 1, 0, 1, 0, 1],]
	target_sentence.tag.test_value = [[0,1,1,5],
										[2,0,1,0],]
	target_sentence_mask.tag.test_value = [[0,1,1,0],
											[1,1,1,0],]


	logger.info('Building RNN encoder-decoder')
	### Building Encoder 
	embedder = LookupTable(
		length=len(vocab_src), 
		dim=config['embed_src'], 
		weights_init=IsotropicGaussian(),
		biases_init=Constant(0.0), 
		name='embedder')
	transformer = Linear(
		config['embed_src'], 
		config['hidden_src']*4, 
		weights_init=IsotropicGaussian(),
		biases_init=Constant(0.0), 
		name='transformer')

	lstminit = np.asarray([0.0,]*config['hidden_src']+[0.0,]*config['hidden_src']+[1.0,]*config['hidden_src']+[0.0,]*config['hidden_src'])
	encoder = Bidirectional(
		LSTM(
			dim=config['hidden_src'], 
			weights_init=IsotropicGaussian(0.01),
			biases_init=Constant(lstminit)),
		name='encoderBiLSTM'
		)
	encoder.prototype.weights_init = Orthogonal()
	
	### Building Decoder 
	lstminit = np.asarray([0.0,]*config['hidden_tgt']+[0.0,]*config['hidden_tgt']+[1.0,]*config['hidden_tgt']+[0.0,]*config['hidden_tgt'])
	transition = LSTM2GO(
		attended_dim=config['hidden_tgt'], 
		dim=config['hidden_tgt'], 
		weights_init=IsotropicGaussian(0.01),
		biases_init=Constant(lstminit), 
		name='decoderLSTM')

	attention = SequenceContentAttention( 
		state_names=transition.apply.states, # default activation is Tanh
		state_dims=[config['hidden_tgt']],
		attended_dim=config['hidden_src']*2,
		match_dim=config['hidden_tgt'], 
		name="attention")

	readout = Readout(
		source_names=['states', 
			'feedback', 
			attention.take_glimpses.outputs[0]],
		readout_dim=len(vocab_tgt),
		emitter = SoftmaxEmitter(
			name='emitter'), 
		feedback_brick = LookupFeedback(
			num_outputs=len(vocab_tgt), 
			feedback_dim=config['embed_tgt'], 
			name='feedback'), 
		post_merge=InitializableFeedforwardSequence([
			Bias(dim=config['hidden_tgt'], 
				name='softmax_bias').apply,
			Linear(input_dim=config['hidden_tgt'], 
				output_dim=config['embed_tgt'],
				use_bias=False, 
				name='softmax0').apply,
			Linear(input_dim=config['embed_tgt'], 
				name='softmax1').apply]),
		merged_dim=config['hidden_tgt'])

	decoder = SequenceGenerator(
		readout=readout, 
		transition=transition, 
		attention=attention, 
		weights_init=IsotropicGaussian(0.01), 
		biases_init=Constant(0),
		name="generator",
		fork=Fork(
			[name for name in transition.apply.sequences if name != 'mask'], 
			prototype=Linear()),
		add_contexts=True)
	decoder.transition.weights_init = Orthogonal()

	#printchildren(encoder, 1)
	# Initialize model
	logger.info('Initializing model')
	embedder.initialize()
	transformer.initialize()
	encoder.initialize()
	decoder.initialize()
	
	# Apply model 
	embedded = embedder.apply(source_sentence)
	tansformed = transformer.apply(embedded)
	encoded = encoder.apply(tansformed)[0]
	generated = decoder.generate(
		n_steps=2*source_sentence.shape[1], 
		batch_size=source_sentence.shape[0], 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask=tensor.ones(source_sentence.shape).T
		)
	print 'Generated: ', generated
	# generator_generate_outputs
	#samples = generated[1] # For GRU 
	samples = generated[2] # For LSTM
	samples.name = 'samples'
	#samples_cost = generated[4] # For GRU 
	samples_cost = generated[5] # For LSTM
	samples_cost = 'sampling_cost'
	cost = decoder.cost(
		mask = target_sentence_mask.T, 
		outputs = target_sentence.T, 
		attended = encoded.dimshuffle(1,0,2), 
		attended_mask = source_sentence_mask.T)
	cost.name = 'target_cost'
	cost.tag.aggregation_scheme = TakeLast(cost)
	model = Model(cost)
	
	logger.info('Creating computational graph')
	cg = ComputationGraph(cost)
	
	# apply dropout for regularization
	if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog
		logger.info('Applying dropout')
		dropout_inputs = [x for x in cg.intermediary_variables if x.name == 'maxout_apply_output']
		cg = apply_dropout(cg, dropout_inputs, config['dropout'])

	######## 
	# Print shapes
	shapes = [param.get_value().shape for param in cg.parameters]
	logger.info("Parameter shapes: ")
	for shape, count in Counter(shapes).most_common():
		logger.info('	{:15}: {}'.format(shape, count))
	logger.info("Total number of parameters: {}".format(len(shapes)))

	printchildren(embedder, 1)
	printchildren(transformer, 1)
	printchildren(encoder, 1)
	printchildren(decoder, 1)
	# Print parameter names
	# enc_dec_param_dict = merge(Selector(embedder).get_parameters(), Selector(encoder).get_parameters(), Selector(decoder).get_parameters())
	# enc_dec_param_dict = merge(Selector(decoder).get_parameters())
	# logger.info("Parameter names: ")
	# for name, value in enc_dec_param_dict.items():
	# 	logger.info('	{:15}: {}'.format(value.get_value().shape, name))
	# logger.info("Total number of parameters: {}".format(len(enc_dec_param_dict)))
	##########

	# Training data 
	train_stream = get_train_stream(config, 
		[config['train_src'],], [config['train_tgt'],], 
		vocab_src, vocab_tgt)
	dev_stream = get_dev_stream(
		[config['dev_src'],], [config['dev_tgt'],], 
		vocab_src, vocab_tgt)
	test_stream = get_test_stream([config['test_src'],], vocab_src)

	# Set extensions
	logger.info("Initializing extensions")
	extensions = [
		FinishAfter(after_n_batches=config['finish_after']),
		ProgressBar(),
		TrainingDataMonitoring([cost], 
			prefix="tra", 
			after_batch=True),
		DataStreamMonitoring(variables=[cost], 
			data_stream=dev_stream, 
			prefix="dev", 
			after_batch=True), 
		Sampler(
			model=Model(samples), 
			data_stream=dev_stream,
			vocab=cabvo,
			saveto=config['saveto']+'dev',
			every_n_batches=config['save_freq']), 
		Sampler(
			model=Model(samples), 
			data_stream=test_stream,
			vocab=cabvo,
			saveto=config['saveto']+'test',
			after_n_batches=1, 
			on_resumption=True,
			before_training=True), 
		Plotter(saveto=config['saveto'], after_batch=True),
		Printing(after_batch=True),
		Checkpoint(
			path=config['saveto'], 
			parameters = cg.parameters,
			save_main_loop=False,
			every_n_batches=config['save_freq'])]
	if BOKEH_AVAILABLE: 
		Plot('Training cost', channels=[['target_cost']], after_batch=True)
	if config['reload']: 
		extensions.append(Load(path=config['saveto'], 
			load_iteration_state=False, 
			load_log=False))
	else: 
		with open(config['saveto']+'.txt', 'w') as f: 
			pass 

	# Set up training algorithm
	logger.info("Initializing training algorithm")
	algorithm = GradientDescent(cost=cost, 
		parameters=cg.parameters,
		step_rule=CompositeRule([StepClipping(config['step_clipping']), 
			eval(config['step_rule'])()])
    )

	# Initialize main loop
	logger.info("Initializing main loop")
	main_loop = MainLoop(
		model=model,
		algorithm=algorithm,
		data_stream=train_stream,
		extensions=extensions)
	main_loop.run()
    post_merge = Identity(),
    merged_dim = dimension,
    name="readout")

generator = SequenceGenerator(
    readout=readout,
    transition=transition,
    fork = Fork(['inputs'], prototype=Identity()),
    weights_init = initialization.Identity(1.),
    biases_init = initialization.Constant(0.),
    name="generator")

generator.push_initialization_config()
generator.transition.transition.weights_init = initialization.Identity(2.)
generator.initialize()

results = generator.generate(n_steps=n_steps, 
            batch_size=1, iterate=True,
            return_initial_states = True)

results_cg = ComputationGraph(results)
results_tf = results_cg.get_theano_function()

generated_sequence_t = results_tf()[1]
generated_sequence_t.shape=(n_steps+1, dimension)
print generated_sequence_t
print generated_sequence



Example #14
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "save_path", default="sine",
        help="The part to save PyLearn2 model")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    parser.add_argument(
        "--reset", action="store_true", default=False,
        help="Start training from scratch")
    args = parser.parse_args()

    num_states = ChainDataset.num_states

    if args.mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition", activation=Tanh(),
                                    dim=dim)
        generator = SequenceGenerator(
            LinearReadout(readout_dim=num_states, source_names=["states"],
                          emitter=SoftmaxEmitter(name="emitter"),
                          feedbacker=LookupFeedback(
                              num_states, feedback_dim, name='feedback'),
                          name="readout"),
            transition,
            weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
            name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        logger.debug("Parameters:\n" +
                     pprint.pformat(
                         [(key, value.get_value().shape) for key, value
                          in Selector(generator).get_params().items()],
                         width=120))
        logger.debug("Markov chain entropy: {}".format(
            ChainDataset.entropy))
        logger.debug("Expected min error: {}".format(
            -ChainDataset.entropy * seq_len * batch_size))

        if os.path.isfile(args.save_path) and not args.reset:
            model = Pylearn2Model.load(args.save_path)
        else:
            model = Pylearn2Model(generator)

        # Build the cost computation graph.
        # Note: would be probably nicer to make cost part of the model.
        x = tensor.ltensor3('x')
        cost = Pylearn2Cost(model.brick.cost(x[:, :, 0]).sum())

        dataset = ChainDataset(rng, seq_len)
        sgd = SGD(learning_rate=0.0001, cost=cost,
                  batch_size=batch_size, batches_per_iter=10,
                  monitoring_dataset=dataset,
                  monitoring_batch_size=batch_size,
                  monitoring_batches=1,
                  learning_rule=Pylearn2LearningRule(
                      SGDLearningRule(),
                      dict(training_objective=cost.cost)))
        train = Pylearn2Train(dataset, model, algorithm=sgd,
                              save_path=args.save_path, save_freq=10)
        train.main_loop()
    elif args.mode == "sample":
        model = Pylearn2Model.load(args.save_path)
        generator = model.brick

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainDataset.trans_prob))
    else:
        assert False
Example #15
0
class NoLookupDecoder(Initializable):
    """This is the decoder implementation without embedding layer or
    softmax. The target sentence is represented as a sequence of #
    vectors as defined by the sparse feature map.
    """

    def __init__(self, 
                 vocab_size, 
                 embedding_dim, 
                 state_dim,
                 att_dim,
                 maxout_dim,
                 representation_dim,
                 attention_strategy='content',
                 attention_sources='s',
                 readout_sources='sfa',
                 memory='none',
                 memory_size=500,
                 seq_len=50,
                 init_strategy='last', 
                 theano_seed=None, 
                 **kwargs):
        """Creates a new decoder brick without embedding.
        
        Args:
            vocab_size (int): Target language vocabulary size
            embedding_dim (int): Size of feedback embedding layer
            state_dim (int): Number of hidden units
            att_dim (int): Size of attention match vector
            maxout_dim (int): Size of maxout layer
            representation_dim (int): Dimension of source annotations
            attention_strategy (string): Which attention should be used
                                         cf.  ``_initialize_attention``
            attention_sources (string): Defines the sources used by the 
                                        attention model 's' for decoder
                                        states, 'f' for feedback
            readout_sources (string): Defines the sources used in the 
                                      readout network. 's' for decoder
                                      states, 'f' for feedback, 'a' for
                                      attention (context vector)
            memory (string): Which external memory should be used
                             (cf.  ``_initialize_attention``)
            memory_size (int): Size of the external memory structure
            seq_len (int): Maximum sentence length
            init_strategy (string): How to initialize the RNN state
                                    (cf.  ``GRUInitialState``)
            theano_seed: Random seed
        """
        super(NoLookupDecoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim
        self.theano_seed = theano_seed

        # Initialize gru with special initial state
        self.transition = GRUInitialState(
            attended_dim=state_dim,
            init_strategy=init_strategy,
            dim=state_dim,
            activation=Tanh(),
            name='decoder')

        # Initialize the attention mechanism
        att_dim = att_dim if att_dim > 0 else state_dim
        self.attention,src_names = _initialize_attention(attention_strategy,
                                                         seq_len, 
                                                         self.transition, 
                                                         representation_dim, 
                                                         att_dim,
                                                         attention_sources,
                                                         readout_sources,
                                                         memory,
                                                         memory_size)

        # Initialize the readout, note that SoftmaxEmitter emits -1 for
        # initial outputs which is used by LookupFeedBackWMT15
        maxout_dim = maxout_dim if maxout_dim > 0 else state_dim
        readout = Readout(
            source_names=src_names,
            readout_dim=embedding_dim,
            emitter=NoLookupEmitter(initial_output=-1,
                                    readout_dim=embedding_dim,
                                    cost_brick=SquaredError()),
            #                        cost_brick=CategoricalCrossEntropy()),
            feedback_brick=TrivialFeedback(output_dim=embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=maxout_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=maxout_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Logistic(name='softmax1').apply]),
            merged_dim=maxout_dim)

        # Build sequence generator accordingly
        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'representation_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, representation_mask,
             target_sentence, target_sentence_mask):

        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(**{
            'mask': target_sentence_mask,
            'outputs': target_sentence,
            'attended': representation,
            'attended_mask': representation_mask}
        )

        return (cost * target_sentence_mask).sum() / \
            target_sentence_mask.shape[1]

    @application
    def generate(self, source_shape, representation, **kwargs):
        return self.sequence_generator.generate(
            n_steps=2 * source_shape[1],
            batch_size=source_shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_shape).T,
            **kwargs)        
Example #16
0
generator = SequenceGenerator(
    readout=readout,
    transition=transition,
    fork = Fork(['inputs'], prototype=Identity()),
    weights_init = initialization.Identity(1.),
    biases_init = initialization.Constant(0.),
    name="generator")

generator.push_initialization_config()
#generator.fork.weights_init = initialization.Identity(1.)
generator.transition.transition.weights_init = initialization.Identity(2.)
generator.initialize()

results = generator.generate(n_steps=n_steps, 
            batch_size=2, iterate=True,
            return_initial_states = True)

results_cg = ComputationGraph(results)
results_tf = results_cg.get_theano_function()

generated_sequence_t = results_tf()[1]
generated_sequence_t.shape=(n_steps+1, dimension)
print generated_sequence_t
print generated_sequence

from blocks.bricks.base import application
from blocks.bricks.attention import AbstractAttention

class SimpleSequenceAttention(AbstractAttention):
    """Combines a conditioning sequence and a recurrent transition via
Example #17
0
def test_sequence_generator_with_lm():
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim,
                                activation=Tanh(),
                                weights_init=Orthogonal())
    language_model = SequenceGenerator(Readout(
        readout_dim=readout_dim,
        source_names=["states"],
        emitter=SoftmaxEmitter(theano_seed=1234),
        feedback_brick=LookupFeedback(readout_dim, dim, name='feedback')),
                                       SimpleRecurrent(dim, Tanh()),
                                       name='language_model')
    generator = SequenceGenerator(Readout(
        readout_dim=readout_dim,
        source_names=["states", "lm_states"],
        emitter=SoftmaxEmitter(theano_seed=1234),
        feedback_brick=LookupFeedback(readout_dim, feedback_dim)),
                                  transition,
                                  language_model=language_model,
                                  weights_init=IsotropicGaussian(0.1),
                                  biases_init=Constant(0),
                                  seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    y.tag.test_value = numpy.zeros((15, batch_size), dtype='int64')
    mask = tensor.matrix('mask')
    mask.tag.test_value = numpy.ones((15, batch_size))

    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 483.153, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], cost)(y_test, m_test)
    assert_allclose(cost_val, 16.105, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join(
        [generator.name, generator.cost.name, 'per_sequence_element'])
    cost_per_el = [
        el for el in var_filter(cg.variables) if el.name == aux_var_name
    ][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.61051, rtol=1e-5)

    # Test generate
    states, outputs, lm_states, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph([states, outputs, costs])
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs], updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -4.88367, rtol=1e-5)
    assert_allclose(costs_val.sum(), 486.681, rtol=1e-5)
    assert outputs_val.sum() == 627

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]], [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
Example #18
0
cost = cost_matrix.sum(axis=0).mean()
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(theano_name_regex="state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98 * np.eye(hidden_size_recurrent, dtype=floatX))

readouts = VariableFilter(applications=[generator.readout.readout], name_regex="output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(
    n_steps=400, iterate=True, attended=embed, attended_mask=context_mask, batch_size=embed.shape[1]
)[-4]

function([x, x_mask, context, context_mask], cost)(x_tr[0], x_tr[1], x_tr[2], x_tr[3])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn(x_tr[3], x_tr[2])[0].shape

min_sigma = sigma.min(axis=(0, 2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0, 2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0, 2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0, 2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0, 2)).copy(name="mu_mean")
max_mean = mean.max(axis=(0, 2)).copy(name="mu_max")

min_corr = corr.min().copy(name="corr_min")
Example #19
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating simple 1d sequences with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode",
        choices=["train", "plot"],
        help="The mode to run. Use `train` to train a new model"
        " and `plot` to plot a sequence generated by an"
        " existing one.")
    parser.add_argument("prefix",
                        default="sine",
                        help="The prefix for model, timing and state files")
    parser.add_argument("--input-noise",
                        type=float,
                        default=0.0,
                        help="Adds Gaussian noise of given intensity to the "
                        " training sequences.")
    parser.add_argument(
        "--function",
        default="lambda a, x: numpy.sin(a * x)",
        help="An analytical description of the sequence family to learn."
        " The arguments before the last one are considered parameters.")
    parser.add_argument("--steps",
                        type=int,
                        default=100,
                        help="Number of steps to plot")
    parser.add_argument("--params", help="Parameter values for plotting")
    args = parser.parse_args()

    function = eval(args.function)
    num_params = len(inspect.getargspec(function).args) - 1

    class Emitter(TrivialEmitter):
        @application
        def cost(self, readouts, outputs):
            """Compute MSE."""
            return ((readouts - outputs)**2).sum(axis=readouts.ndim - 1)

    transition = GatedRecurrent(name="transition",
                                activation=Tanh(),
                                dim=10,
                                weights_init=Orthogonal())
    with_params = AddParameters(transition,
                                num_params,
                                "params",
                                name="with_params")
    generator = SequenceGenerator(LinearReadout(
        readout_dim=1,
        source_names=["states"],
        emitter=Emitter(name="emitter"),
        name="readout"),
                                  with_params,
                                  weights_init=IsotropicGaussian(0.01),
                                  biases_init=Constant(0),
                                  name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" + pprint.pformat(
        [(key, value.get_value().shape)
         for key, value in Selector(generator).get_params().items()],
        width=120))

    if args.mode == "train":
        seed = 1
        rng = numpy.random.RandomState(seed)
        batch_size = 10

        generator.initialize()

        cost = ComputationGraph(
            generator.cost(tensor.tensor3('x'),
                           params=tensor.matrix("params")).sum())
        cost = apply_noise(cost, cost.inputs, args.input_noise)

        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = SeriesIterator(rng, function, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.load()
        main_loop.main()
    elif args.mode == "plot":
        load_params(generator, args.prefix + "model.npz")

        params = tensor.matrix("params")
        sample = theano.function([params],
                                 generator.generate(params=params,
                                                    n_steps=args.steps,
                                                    batch_size=1))

        param_values = numpy.array(map(float, args.params.split()),
                                   dtype=floatX)
        states, outputs, _ = sample(param_values[None, :])
        actual = outputs[:, 0, 0]
        desired = numpy.array(
            [function(*(list(param_values) + [T])) for T in range(args.steps)])
        print("MSE: {}".format(((actual - desired)**2).sum()))

        pyplot.plot(numpy.hstack([actual[:, None], desired[:, None]]))
        pyplot.show()
    else:
        assert False
Example #20
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of language modeling with RNN",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode",
        choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
        " and `sample` to sample a sequence generated by an"
        " existing one.")
    parser.add_argument("prefix",
                        default="sine",
                        help="The prefix for model, timing and state files")
    parser.add_argument("state",
                        nargs="?",
                        default="",
                        help="Changes to Groundhog state")
    parser.add_argument("--path", help="Path to a language dataset")
    parser.add_argument("--dict", help="Path to the dataset dictionary")
    parser.add_argument("--restart", help="Start anew")
    parser.add_argument("--reset",
                        action="store_true",
                        default=False,
                        help="Reset the hidden state between batches")
    parser.add_argument("--steps",
                        type=int,
                        default=100,
                        help="Number of steps to plot for the 'sample' mode"
                        " OR training sequence length for the 'train' mode.")
    args = parser.parse_args()
    logger.debug("Args:\n" + str(args))

    dim = 200
    num_chars = 50

    transition = GatedRecurrent(name="transition",
                                activation=Tanh(),
                                dim=dim,
                                weights_init=Orthogonal())
    generator = SequenceGenerator(LinearReadout(
        readout_dim=num_chars,
        source_names=["states"],
        emitter=SoftmaxEmitter(name="emitter"),
        feedbacker=LookupFeedback(num_chars, dim, name='feedback'),
        name="readout"),
                                  transition,
                                  weights_init=IsotropicGaussian(0.01),
                                  biases_init=Constant(0),
                                  name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" + pprint.pformat(
        [(key, value.get_value().shape)
         for key, value in Selector(generator).get_params().items()],
        width=120))

    if args.mode == "train":
        batch_size = 1
        seq_len = args.steps

        generator.initialize()

        # Build cost computation graph that uses the saved hidden states.
        # An issue: for Groundhog this is completely transparent, that's
        # why it does not carry the hidden state over the period when
        # validation in done. We should find a way to fix in the future.
        x = tensor.lmatrix('x')
        init_states = shared_floatx_zeros((batch_size, dim),
                                          name='init_states')
        reset = tensor.scalar('reset')
        cost = ComputationGraph(
            generator.cost(x, states=init_states * reset).sum())
        # TODO: better search routine
        states = [
            v for v in cost.variables if hasattr(v.tag, 'application_call')
            and v.tag.application_call.brick == generator.transition and
            (v.tag.application_call.application == generator.transition.apply)
            and v.tag.role == VariableRole.OUTPUT and v.tag.name == 'states'
        ]
        assert len(states) == 1
        states = states[0]

        gh_model = GroundhogModel(generator, cost)
        gh_model.properties.append(
            ('bpc', cost.outputs[0] * numpy.log(2) / seq_len))
        gh_model.properties.append(('mean_init_state', init_states.mean()))
        gh_model.properties.append(('reset', reset))
        if not args.reset:
            gh_model.updates.append((init_states, states[-1]))

        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        changes = eval("dict({})".format(args.state))
        state.update(changes)

        def output_format(x, y, reset):
            return dict(x=x[:, None], reset=reset)

        train, valid, test = [
            LMIterator(batch_size=batch_size,
                       use_infinite_loop=mode == 'train',
                       path=args.path,
                       seq_len=seq_len,
                       mode=mode,
                       chunks='chars',
                       output_format=output_format,
                       can_fit=True) for mode in ['train', 'valid', 'test']
        ]

        trainer = SGD(gh_model, state, train)
        state['on_nan'] = 'warn'
        state['cutoff'] = 1.

        main_loop = MainLoop(train, valid, None, gh_model, trainer, state,
                             None)
        if not args.restart:
            main_loop.load()
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator, args.prefix + "model.npz")

        chars = numpy.load(args.dict)['unique_chars']

        sample = ComputationGraph(
            generator.generate(n_steps=args.steps, batch_size=10,
                               iterate=True)).function()

        states, outputs, costs = sample()

        for i in range(10):
            print("Generation cost: {}".format(costs[:, i].sum()))
            print("".join([chars[o] for o in outputs[:, i]]))
    else:
        assert False
Example #21
0
generator.transition.push_initialization_config()

generator.initialize()

##############
# Test model
##############

cost_matrix = generator.cost_matrix(x,
        attended = mlp_context.apply(context))
cost = cost_matrix.mean()
cost.name = "nll"

emit = generator.generate(
  attended = mlp_context.apply(context),
  n_steps = context.shape[0],
  batch_size = context.shape[1],
  iterate = True
  )[-4]

cg = ComputationGraph(cost)
model = Model(cost)

#################
# Algorithm
#################

n_batches = 139#139*16

algorithm = GradientDescent(
    cost=cost, parameters=cg.parameters,
    step_rule=CompositeRule([StepClipping(10.0), Adam(lr)]))
def test_sequence_generator_with_lm():
    floatX = theano.config.floatX
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim, activation=Tanh(),
                                weights_init=Orthogonal())
    language_model = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim, dim,
                                              name='feedback')),
        SimpleRecurrent(dim, Tanh()),
        name='language_model')
    generator = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states", "lm_states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim,
                                              feedback_dim)),
        transition,
        language_model=language_model,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    y.tag.test_value = numpy.zeros((15, batch_size), dtype='int64')
    mask = tensor.matrix('mask')
    mask.tag.test_value = numpy.ones((15, batch_size))

    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 483.153, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], cost)(y_test, m_test)
    assert_allclose(cost_val, 16.105, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.61051, rtol=1e-5)

    # Test generate
    states, outputs, lm_states, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph([states, outputs, costs])
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -4.88367, rtol=1e-5)
    assert_allclose(costs_val.sum(), 486.681, rtol=1e-5)
    assert outputs_val.sum() == 627

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]],
                      [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
Example #23
0
cost.name = "nll"

cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(theano_name_regex="state_to_state")(
    cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98 * np.eye(hidden_size_recurrent, dtype=floatX))

readouts = VariableFilter(applications=[generator.readout.readout],
                          name_regex="output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(n_steps=400, batch_size=8, iterate=True)[-2]

#ipdb.set_trace()

function([x, x_mask], cost)(x_tr[0], x_tr[1])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn()

min_sigma = sigma.min(axis=(0, 2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0, 2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0, 2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0, 2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0, 2)).copy(name="mu_mean")
max_mean = mean.max(axis=(0, 2)).copy(name="mu_max")
def test_attention_transition():
    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    transition = TestTransition(dim=inp_dim, attended_dim=attended_dim,
                                name="transition")
    attention = SequenceContentAttention(transition.apply.states,
                                         match_dim=inp_dim, name="attention")
    mixer = Mixer([name for name in transition.apply.sequences
                   if name != 'mask'],
                  attention.take_look.outputs[0],
                  name="mixer")
    att_trans = AttentionTransition(transition, attention, mixer,
                                    name="att_trans")
    att_trans.weights_init = IsotropicGaussian(0.01)
    att_trans.biases_init = Constant(0)
    att_trans.initialize()

    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    inputs = tensor.tensor3("inputs")
    inputs_mask = tensor.matrix("inputs_mask")
    states, glimpses, weights = att_trans.apply(
        input_=inputs, mask=inputs_mask,
        attended=attended, attended_mask=attended_mask)
    assert states.ndim == 3
    assert glimpses.ndim == 3
    assert weights.ndim == 3

    input_vals = numpy.zeros((inp_len, batch_size, inp_dim),
                             dtype=floatX)
    input_mask_vals = numpy.ones((inp_len, batch_size),
                                 dtype=floatX)
    attended_vals = numpy.zeros((attended_len, batch_size, attended_dim),
                                dtype=floatX)
    attended_mask_vals = numpy.ones((attended_len, batch_size),
                                    dtype=floatX)

    func = theano.function([inputs, inputs_mask, attended, attended_mask],
                           [states, glimpses, weights])
    states_vals, glimpses_vals, weight_vals = func(
        input_vals, input_mask_vals,
        attended_vals, attended_mask_vals)

    assert states_vals.shape == input_vals.shape
    assert glimpses_vals.shape == (inp_len, batch_size, attended_dim)
    assert weight_vals.shape == (inp_len, batch_size, attended_len)

    # Test SequenceGenerator using AttentionTransition
    generator = SequenceGenerator(
        LinearReadout(readout_dim=inp_dim, source_names=["state"],
                      emitter=TestEmitter(name="emitter"),
                      name="readout"),
        transition=transition,
        attention=attention,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")

    outputs = tensor.tensor3('outputs')
    costs = generator.cost(outputs, attended=attended,
                           attended_mask=attended_mask)
    costs_vals = costs.eval({outputs: input_vals,
                            attended: attended_vals,
                            attended_mask: attended_mask_vals})
    assert costs_vals.shape == (inp_len, batch_size)

    results = (
        generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
                           attended=attended, attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask], results)
        (attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
Example #25
0
File: model.py Project: rizar/NMT
class Decoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim,
                 representation_dim, **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim

        self.transition = GRUInitialState(
            attended_dim=state_dim, dim=state_dim,
            activation=Tanh(), name='decoder')
        self.attention = SequenceContentAttention(
            state_names=self.transition.apply.states,
            attended_dim=representation_dim,
            match_dim=state_dim, name="attention")

        readout = Readout(
            source_names=['states', 'feedback', self.attention.take_glimpses.outputs[0]],
            readout_dim=self.vocab_size,
            emitter=SoftmaxEmitter(initial_output=-1),
            feedback_brick=LookupFeedbackWMT15(vocab_size, embedding_dim),
            post_merge=InitializableFeedforwardSequence(
                [Bias(dim=state_dim, name='maxout_bias').apply,
                 Maxout(num_pieces=2, name='maxout').apply,
                 Linear(input_dim=state_dim / 2, output_dim=embedding_dim,
                        use_bias=False, name='softmax0').apply,
                 Linear(input_dim=embedding_dim, name='softmax1').apply]),
            merged_dim=state_dim)

        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([name for name in self.transition.apply.sequences
                       if name != 'mask'], prototype=Linear())
        )

        self.children = [self.sequence_generator]

    @application(inputs=['representation', 'source_sentence_mask',
                         'target_sentence_mask', 'target_sentence'],
                 outputs=['cost'])
    def cost(self, representation, source_sentence_mask,
             target_sentence, target_sentence_mask):

        source_sentence_mask = source_sentence_mask.T
        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(
                    **{'mask': target_sentence_mask,
                       'outputs': target_sentence,
                       'attended': representation,
                       'attended_mask': source_sentence_mask}
        )

        return (cost * target_sentence_mask).sum() / target_sentence_mask.shape[1]

    @application
    def generate(self, source_sentence, representation):
        return self.sequence_generator.generate(
            n_steps=2 * source_sentence.shape[1],
            batch_size=source_sentence.shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_sentence.shape).T)
Example #26
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of language modeling with RNN",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "state", nargs="?", default="",
        help="Changes to Groundhog state")
    parser.add_argument("--path", help="Path to a language dataset")
    parser.add_argument("--dict", help="Path to the dataset dictionary")
    parser.add_argument("--restart", help="Start anew")
    parser.add_argument(
        "--reset", action="store_true", default=False,
        help="Reset the hidden state between batches")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot for the 'sample' mode"
             " OR training sequence length for the 'train' mode.")
    args = parser.parse_args()
    logger.debug("Args:\n" + str(args))

    dim = 200
    num_chars = 50

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=dim,
        weights_init=Orthogonal())
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_chars, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_chars, dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        batch_size = 1
        seq_len = args.steps

        generator.initialize()

        # Build cost computation graph that uses the saved hidden states.
        # An issue: for Groundhog this is completely transparent, that's
        # why it does not carry the hidden state over the period when
        # validation in done. We should find a way to fix in the future.
        x = tensor.lmatrix('x')
        init_states = shared_floatx_zeros((batch_size, dim),
                                          name='init_states')
        reset = tensor.scalar('reset')
        cost = ComputationGraph(
            generator.cost(x, states=init_states * reset).sum())
        # TODO: better search routine
        states = [v for v in cost.variables
                  if hasattr(v.tag, 'application_call')
                  and v.tag.application_call.brick == generator.transition
                  and (v.tag.application_call.application ==
                       generator.transition.apply)
                  and v.tag.role == VariableRole.OUTPUT
                  and v.tag.name == 'states']
        assert len(states) == 1
        states = states[0]

        gh_model = GroundhogModel(generator, cost)
        gh_model.properties.append(
            ('bpc', cost.outputs[0] * numpy.log(2) / seq_len))
        gh_model.properties.append(('mean_init_state', init_states.mean()))
        gh_model.properties.append(('reset', reset))
        if not args.reset:
            gh_model.updates.append((init_states, states[-1]))

        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        changes = eval("dict({})".format(args.state))
        state.update(changes)

        def output_format(x, y, reset):
            return dict(x=x[:, None], reset=reset)
        train, valid, test = [
            LMIterator(batch_size=batch_size,
                       use_infinite_loop=mode == 'train',
                       path=args.path,
                       seq_len=seq_len,
                       mode=mode,
                       chunks='chars',
                       output_format=output_format,
                       can_fit=True)
            for mode in ['train', 'valid', 'test']]

        trainer = SGD(gh_model, state, train)
        state['on_nan'] = 'warn'
        state['cutoff'] = 1.

        main_loop = MainLoop(train, valid, None, gh_model,
                             trainer, state, None)
        if not args.restart:
            main_loop.load()
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator,  args.prefix + "model.npz")

        chars = numpy.load(args.dict)['unique_chars']

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=10, iterate=True)).function()

        states, outputs, costs = sample()

        for i in range(10):
            print("Generation cost: {}".format(costs[:, i].sum()))
            print("".join([chars[o] for o in outputs[:, i]]))
    else:
        assert False
Example #27
0
                             TrainingDataMonitoring([cost],
                                                    prefix="this_step",
                                                    after_batch=True),
                             TrainingDataMonitoring([cost],
                                                    prefix="average",
                                                    every_n_batches=100),
                             Checkpoint(args.model, every_n_epochs=5),
                             Printing(every_n_batches=100)
                         ])
    main_loop.run()

elif args.mode == "retrain":
    main_loop = load(open(args.model, "rb"))
    main_loop.run()

elif args.mode == "sample":
    main_loop = load(open(args.model, "rb"))
    # get the one and only brick in the computation graph
    generator = main_loop.model.get_top_bricks()[0]

    sample = ComputationGraph(
        generator.generate(n_steps=args.sample_size,
                           batch_size=1,
                           iterate=True)).get_theano_function()

    states, outputs, costs = [data[:, 0] for data in sample()]

    print "".join(corpus.decode(outputs))
else:
    assert False
def test_sequence_generator():
    """Test a sequence generator with no contexts and continuous outputs.

    Such sequence generators can be used to model e.g. dynamical systems.

    """
    rng = numpy.random.RandomState(1234)

    output_dim = 1
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = SimpleRecurrent(activation=Tanh(), dim=dim,
                                 weights_init=Orthogonal())
    generator = SequenceGenerator(
        Readout(readout_dim=output_dim, source_names=["states"],
                emitter=TestEmitter()),
        transition,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0.0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.tensor3('y')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    y_test = rng.uniform(size=(n_steps, batch_size, output_dim)).astype(floatX)
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = theano.function([y, mask], [costs])(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 115.593, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], [cost])(y_test, m_test)
    assert_allclose(cost_val, 3.8531, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 0.38531, rtol=1e-5)

    # Test 'generate' method
    states, outputs, costs = [variable.eval() for variable in
                              generator.generate(
                                  states=rng.uniform(
                                      size=(batch_size, dim)).astype(floatX),
                                  iterate=True, batch_size=batch_size,
                                  n_steps=n_steps)]
    assert states.shape == (n_steps, batch_size, dim)
    assert outputs.shape == (n_steps, batch_size, output_dim)
    assert costs.shape == (n_steps, batch_size)
    assert_allclose(outputs.sum(), -0.33683, rtol=1e-5)
    assert_allclose(states.sum(), 15.7909, rtol=1e-5)
    # There is no generation cost in this case, since generation is
    # deterministic
    assert_allclose(costs.sum(), 0.0)
Example #29
0
class PyramidLayer(Initializable):
    """Basic unit for the pyramid model.

    """
    def __init__(self,
				 batch_size,
				 frame_size,
				 k,
				 depth,
				 size,
				  **kwargs):
		super(PyramidLayer, self).__init__(**kwargs)

		target_size = frame_size * k

		depth_x = depth
		hidden_size_mlp_x = 32*size

		depth_transition = depth-1

		depth_theta = depth
		hidden_size_mlp_theta = 32*size
		hidden_size_recurrent = 32*size*3

		depth_context = depth
		hidden_size_mlp_context = 32*size
		context_size = 32*size

		activations_x = [Rectifier()]*depth_x

		dims_x = [frame_size] + [hidden_size_mlp_x]*(depth_x-1) + \
		         [4*hidden_size_recurrent]

		activations_theta = [Rectifier()]*depth_theta

		dims_theta = [hidden_size_recurrent] + \
		             [hidden_size_mlp_theta]*depth_theta

		activations_context = [Rectifier()]*depth_context

		dims_context = [frame_size] + [hidden_size_mlp_context]*(depth_context-1) + \
		         [context_size]

		mlp_x = MLP(activations = activations_x,
		            dims = dims_x,
		            name = "mlp_x")

		feedback = DeepTransitionFeedback(mlp = mlp_x)

		transition = [GatedRecurrent(dim=hidden_size_recurrent, 
		                   use_bias = True,
		                   name = "gru_{}".format(i) ) for i in range(depth_transition)]

		transition = RecurrentStack( transition,
		            name="transition", skip_connections = True)

		self.transition = transition

		mlp_theta = MLP( activations = activations_theta,
		             dims = dims_theta,
		             name = "mlp_theta")

		mlp_gmm = GMMMLP(mlp = mlp_theta,
		                  dim = target_size,
		                  k = k,
		                  const = 0.00001,
		                  name = "gmm_wrap")

		gmm_emitter = GMMEmitter(gmmmlp = mlp_gmm,
		  output_size = frame_size, k = k)

		source_names = [name for name in transition.apply.states if 'states' in name]

		attention = SimpleSequenceAttention(
		              state_names = source_names,
		              state_dims = [hidden_size_recurrent],
		              attended_dim = context_size,
		              name = "attention")

		#ipdb.set_trace()
		# Verify source names
		readout = Readout(
		    readout_dim = hidden_size_recurrent,
		    source_names =source_names + ['feedback'] + ['glimpses'],
		    emitter=gmm_emitter,
		    feedback_brick = feedback,
		    name="readout")

		self.generator = SequenceGenerator(readout=readout, 
		                              transition=transition,
		                              attention = attention,
		                              name = "generator")

		self.mlp_context = MLP(activations = activations_context,
		                  dims = dims_context)

		self.children = [self.generator, self.mlp_context]
		self.final_states = []
	

    def monitoring_vars(self, cg):

        readout = self.generator.readout
        readouts = VariableFilter( applications = [readout.readout],
            name_regex = "output")(cg.variables)[0]

        mu, sigma, coeff = readout.emitter.components(readouts)

        min_sigma = sigma.min().copy(name="sigma_min")
        mean_sigma = sigma.mean().copy(name="sigma_mean")
        max_sigma = sigma.max().copy(name="sigma_max")

        min_mu = mu.min().copy(name="mu_min")
        mean_mu = mu.mean().copy(name="mu_mean")
        max_mu = mu.max().copy(name="mu_max")

        monitoring_vars = [mean_sigma, min_sigma,
            min_mu, max_mu, mean_mu, max_sigma]

        return monitoring_vars

    @application
    def cost(self, x, context, **kwargs):
        cost_matrix = self.generator.cost_matrix(
                x, attended=self.mlp_context.apply(context),
                **kwargs)

        return cost_matrix.mean()

    @application
    def generate(context):
        return self.generator.generate(
          attended = self.mlp_context.apply(context),
          n_steps = context.shape[0],
          batch_size = context.shape[1],
          iterate = True)
class Decoder(Initializable):
    """Decoder of RNNsearch model."""
    def __init__(self,
                 vocab_size,
                 embedding_dim,
                 state_dim,
                 representation_dim,
                 theano_seed=None,
                 **kwargs):
        super(Decoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim
        self.theano_seed = theano_seed

        # Initialize gru with special initial state
        self.transition = GRUInitialState(attended_dim=state_dim,
                                          dim=state_dim,
                                          activation=Tanh(),
                                          name='decoder')

        # Initialize the attention mechanism
        self.attention = SequenceContentAttention(
            state_names=self.transition.apply.states,
            attended_dim=representation_dim,
            match_dim=state_dim,
            name="attention")

        # Initialize the readout, note that SoftmaxEmitter emits -1 for
        # initial outputs which is used by LookupFeedBackWMT15
        readout = Readout(source_names=[
            'states', 'feedback', self.attention.take_glimpses.outputs[0]
        ],
                          readout_dim=self.vocab_size,
                          emitter=SoftmaxEmitter(initial_output=-1,
                                                 theano_seed=theano_seed),
                          feedback_brick=LookupFeedbackWMT15(
                              vocab_size, embedding_dim),
                          post_merge=InitializableFeedforwardSequence([
                              Bias(dim=state_dim, name='maxout_bias').apply,
                              Maxout(num_pieces=2, name='maxout').apply,
                              Linear(input_dim=state_dim / 2,
                                     output_dim=embedding_dim,
                                     use_bias=False,
                                     name='softmax0').apply,
                              Linear(input_dim=embedding_dim,
                                     name='softmax1').apply
                          ]),
                          merged_dim=state_dim)

        # Build sequence generator accordingly
        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([
                name
                for name in self.transition.apply.sequences if name != 'mask'
            ],
                      prototype=Linear()))

        self.children = [self.sequence_generator]

    @application(inputs=[
        'representation', 'source_sentence_mask', 'target_sentence_mask',
        'target_sentence'
    ],
                 outputs=['cost'])
    def cost(self, representation, source_sentence_mask, target_sentence,
             target_sentence_mask):

        source_sentence_mask = source_sentence_mask.T
        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(
            **{
                'mask': target_sentence_mask,
                'outputs': target_sentence,
                'attended': representation,
                'attended_mask': source_sentence_mask
            })

        return (cost * target_sentence_mask).sum() / \
            target_sentence_mask.shape[1]

    @application
    def generate(self, source_sentence, representation, **kwargs):
        return self.sequence_generator.generate(
            n_steps=2 * source_sentence.shape[1],
            batch_size=source_sentence.shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_sentence.shape).T,
            **kwargs)
Example #31
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    args = parser.parse_args()

    dim = 10
    num_states = ChainIterator.num_states
    feedback_dim = 8

    transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim)
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_states, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_states, feedback_dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        rng = numpy.random.RandomState(1)
        batch_size = 50

        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()
        logger.debug("transition.weights_init={}".format(
            transition.weights_init))

        cost = generator.cost(tensor.lmatrix('x')).sum()
        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = ChainIterator(rng, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator,  args.prefix + "model.npz")

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainIterator.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainIterator.trans_prob))
    else:
        assert False
Example #32
0
def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating simple 1d sequences with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "plot"],
        help="The mode to run. Use `train` to train a new model"
             " and `plot` to plot a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "--input-noise", type=float, default=0.0,
        help="Adds Gaussian noise of given intensity to the "
             " training sequences.")
    parser.add_argument(
        "--function", default="lambda a, x: numpy.sin(a * x)",
        help="An analytical description of the sequence family to learn."
             " The arguments before the last one are considered parameters.")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    parser.add_argument(
        "--params",
        help="Parameter values for plotting")
    args = parser.parse_args()

    function = eval(args.function)
    num_params = len(inspect.getargspec(function).args) - 1

    class Emitter(TrivialEmitter):
        @application
        def cost(self, readouts, outputs):
            """Compute MSE."""
            return ((readouts - outputs) ** 2).sum(axis=readouts.ndim - 1)

    transition = GatedRecurrent(
        name="transition", activation=Tanh(), dim=10,
        weights_init=Orthogonal())
    with_params = AddParameters(transition, num_params, "params",
                                name="with_params")
    generator = SequenceGenerator(
        LinearReadout(readout_dim=1, source_names=["states"],
                      emitter=Emitter(name="emitter"), name="readout"),
        with_params,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        seed = 1
        rng = numpy.random.RandomState(seed)
        batch_size = 10

        generator.initialize()

        cost = ComputationGraph(
            generator.cost(tensor.tensor3('x'),
                           params=tensor.matrix("params")).sum())
        cost = apply_noise(cost, cost.inputs, args.input_noise)

        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = SeriesIterator(rng, function, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.load()
        main_loop.main()
    elif args.mode == "plot":
        load_params(generator,  args.prefix + "model.npz")

        params = tensor.matrix("params")
        sample = theano.function([params], generator.generate(
            params=params, n_steps=args.steps, batch_size=1))

        param_values = numpy.array(map(float, args.params.split()),
                                   dtype=floatX)
        states, outputs, _ = sample(param_values[None, :])
        actual = outputs[:, 0, 0]
        desired = numpy.array([function(*(list(param_values) + [T]))
                               for T in range(args.steps)])
        print("MSE: {}".format(((actual - desired) ** 2).sum()))

        pyplot.plot(numpy.hstack([actual[:, None], desired[:, None]]))
        pyplot.show()
    else:
        assert False
def test_with_attention():
    """Test a sequence generator with continuous outputs and attention."""
    rng = numpy.random.RandomState(1234)

    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    # For values
    def rand(size):
        return rng.uniform(size=size).astype(floatX)

    # For masks
    def generate_mask(length, batch_size):
        mask = numpy.ones((length, batch_size), dtype=floatX)
        # To make it look like read data
        for i in range(batch_size):
            mask[1 + rng.randint(0, length - 1):, i] = 0.0
        return mask

    output_vals = rand((inp_len, batch_size, inp_dim))
    output_mask_vals = generate_mask(inp_len, batch_size)
    attended_vals = rand((attended_len, batch_size, attended_dim))
    attended_mask_vals = generate_mask(attended_len, batch_size)

    transition = TestTransition(
        dim=inp_dim, attended_dim=attended_dim, activation=Identity())
    attention = SequenceContentAttention(
        state_names=transition.apply.states, match_dim=inp_dim)
    generator = SequenceGenerator(
        Readout(
            readout_dim=inp_dim,
            source_names=[transition.apply.states[0],
                          attention.take_glimpses.outputs[0]],
            emitter=TestEmitter()),
        transition=transition,
        attention=attention,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        add_contexts=False, seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    outputs = tensor.tensor3('outputs')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(outputs, mask,
                                  attended=attended,
                                  attended_mask=attended_mask)
    costs_vals = costs.eval({outputs: output_vals,
                             mask: output_mask_vals,
                             attended: attended_vals,
                             attended_mask: attended_mask_vals})
    assert costs_vals.shape == (inp_len, batch_size)
    assert_allclose(costs_vals.sum(), 13.5042, rtol=1e-5)

    # Test `generate` method
    results = (
        generator.generate(n_steps=n_steps, batch_size=attended.shape[1],
                           attended=attended, attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask], results)
        (attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
    assert_allclose(states_vals.sum(), 23.4172, rtol=1e-5)
    # There is no generation cost in this case, since generation is
    # deterministic
    assert_allclose(costs_vals.sum(), 0.0, rtol=1e-5)
    assert_allclose(weights_vals.sum(), 120.0, rtol=1e-5)
    assert_allclose(glimpses_vals.sum(), 199.2402, rtol=1e-5)
    assert_allclose(outputs_vals.sum(), -11.6008, rtol=1e-5)
Example #34
0
def main(mode, save_path, steps, num_batches):
    num_states = MarkovChainDataset.num_states

    if mode == "train":
        # Experiment configuration
        rng = numpy.random.RandomState(1)
        batch_size = 50
        seq_len = 100
        dim = 10
        feedback_dim = 8

        # Build the bricks and initialize them
        transition = GatedRecurrent(name="transition",
                                    dim=dim,
                                    activation=Tanh())
        generator = SequenceGenerator(Readout(
            readout_dim=num_states,
            source_names=["states"],
            emitter=SoftmaxEmitter(name="emitter"),
            feedback_brick=LookupFeedback(num_states,
                                          feedback_dim,
                                          name='feedback'),
            name="readout"),
                                      transition,
                                      weights_init=IsotropicGaussian(0.01),
                                      biases_init=Constant(0),
                                      name="generator")
        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()

        # Give an idea of what's going on.
        logger.info("Parameters:\n" + pprint.pformat(
            [(key, value.get_value().shape)
             for key, value in Selector(generator).get_params().items()],
            width=120))
        logger.info("Markov chain entropy: {}".format(
            MarkovChainDataset.entropy))
        logger.info("Expected min error: {}".format(
            -MarkovChainDataset.entropy * seq_len))

        # Build the cost computation graph.
        x = tensor.lmatrix('data')
        cost = aggregation.mean(
            generator.cost_matrix(x[:, :]).sum(), x.shape[1])
        cost.name = "sequence_log_likelihood"

        algorithm = GradientDescent(
            cost=cost,
            params=list(Selector(generator).get_params().values()),
            step_rule=Scale(0.001))
        main_loop = MainLoop(algorithm=algorithm,
                             data_stream=DataStream(
                                 MarkovChainDataset(rng, seq_len),
                                 iteration_scheme=ConstantScheme(batch_size)),
                             model=Model(cost),
                             extensions=[
                                 FinishAfter(after_n_batches=num_batches),
                                 TrainingDataMonitoring([cost],
                                                        prefix="this_step",
                                                        after_batch=True),
                                 TrainingDataMonitoring([cost],
                                                        prefix="average",
                                                        every_n_batches=100),
                                 Checkpoint(save_path, every_n_batches=500),
                                 Printing(every_n_batches=100)
                             ])
        main_loop.run()
    elif mode == "sample":
        main_loop = cPickle.load(open(save_path, "rb"))
        generator = main_loop.model

        sample = ComputationGraph(
            generator.generate(n_steps=steps, batch_size=1,
                               iterate=True)).get_theano_function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               MarkovChainDataset.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, MarkovChainDataset.trans_prob))
    else:
        assert False
def test_integer_sequence_generator():
    """Test a sequence generator with integer outputs.

    Such sequence generators can be used to e.g. model language.

    """
    rng = numpy.random.RandomState(1234)

    readout_dim = 5
    feedback_dim = 3
    dim = 20
    batch_size = 30
    n_steps = 10

    transition = GatedRecurrent(dim=dim, activation=Tanh(),
                                weights_init=Orthogonal())
    generator = SequenceGenerator(
        Readout(readout_dim=readout_dim, source_names=["states"],
                emitter=SoftmaxEmitter(theano_seed=1234),
                feedback_brick=LookupFeedback(readout_dim,
                                              feedback_dim)),
        transition,
        weights_init=IsotropicGaussian(0.1), biases_init=Constant(0),
        seed=1234)
    generator.initialize()

    # Test 'cost_matrix' method
    y = tensor.lmatrix('y')
    mask = tensor.matrix('mask')
    costs = generator.cost_matrix(y, mask)
    assert costs.ndim == 2
    costs_fun = theano.function([y, mask], [costs])
    y_test = rng.randint(readout_dim, size=(n_steps, batch_size))
    m_test = numpy.ones((n_steps, batch_size), dtype=floatX)
    costs_val = costs_fun(y_test, m_test)[0]
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(costs_val.sum(), 482.827, rtol=1e-5)

    # Test 'cost' method
    cost = generator.cost(y, mask)
    assert cost.ndim == 0
    cost_val = theano.function([y, mask], [cost])(y_test, m_test)
    assert_allclose(cost_val, 16.0942, rtol=1e-5)

    # Test 'AUXILIARY' variable 'per_sequence_element' in 'cost' method
    cg = ComputationGraph([cost])
    var_filter = VariableFilter(roles=[AUXILIARY])
    aux_var_name = '_'.join([generator.name, generator.cost.name,
                             'per_sequence_element'])
    cost_per_el = [el for el in var_filter(cg.variables)
                   if el.name == aux_var_name][0]
    assert cost_per_el.ndim == 0
    cost_per_el_val = theano.function([y, mask], [cost_per_el])(y_test, m_test)
    assert_allclose(cost_per_el_val, 1.60942, rtol=1e-5)

    # Test generate
    states, outputs, costs = generator.generate(
        iterate=True, batch_size=batch_size, n_steps=n_steps)
    cg = ComputationGraph(states + outputs + costs)
    states_val, outputs_val, costs_val = theano.function(
        [], [states, outputs, costs],
        updates=cg.updates)()
    assert states_val.shape == (n_steps, batch_size, dim)
    assert outputs_val.shape == (n_steps, batch_size)
    assert outputs_val.dtype == 'int64'
    assert costs_val.shape == (n_steps, batch_size)
    assert_allclose(states_val.sum(), -17.91811, rtol=1e-5)
    assert_allclose(costs_val.sum(), 482.863, rtol=1e-5)
    assert outputs_val.sum() == 630

    # Test masks agnostic results of cost
    cost1 = costs_fun([[1], [2]], [[1], [1]])[0]
    cost2 = costs_fun([[3, 1], [4, 2], [2, 0]],
                      [[1, 1], [1, 1], [1, 0]])[0]
    assert_allclose(cost1.sum(), cost2[:, 1].sum(), rtol=1e-5)
Example #36
0
cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(theano_name_regex="state_to_state")(
    cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98 * np.eye(hidden_size_recurrent, dtype=floatX))

readouts = VariableFilter(applications=[generator.readout.readout],
                          name_regex="output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(n_steps=400,
                          iterate=True,
                          attended=embed,
                          attended_mask=context_mask,
                          batch_size=embed.shape[1])[-4]

function([x, x_mask, context, context_mask], cost)(x_tr[0], x_tr[1], x_tr[2],
                                                   x_tr[3])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn(x_tr[3], x_tr[2])[0].shape

min_sigma = sigma.min(axis=(0, 2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0, 2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0, 2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0, 2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0, 2)).copy(name="mu_mean")
max_mean = mean.max(axis=(0, 2)).copy(name="mu_max")
Example #37
0
def test_attention_transition():
    inp_dim = 2
    inp_len = 10
    attended_dim = 3
    attended_len = 11
    batch_size = 4
    n_steps = 30

    transition = TestTransition(dim=inp_dim,
                                attended_dim=attended_dim,
                                name="transition")
    attention = SequenceContentAttention(transition.apply.states,
                                         match_dim=inp_dim,
                                         name="attention")
    mixer = Mixer(
        [name for name in transition.apply.sequences if name != 'mask'],
        attention.take_look.outputs[0],
        name="mixer")
    att_trans = AttentionTransition(transition,
                                    attention,
                                    mixer,
                                    name="att_trans")
    att_trans.weights_init = IsotropicGaussian(0.01)
    att_trans.biases_init = Constant(0)
    att_trans.initialize()

    attended = tensor.tensor3("attended")
    attended_mask = tensor.matrix("attended_mask")
    inputs = tensor.tensor3("inputs")
    inputs_mask = tensor.matrix("inputs_mask")
    states, glimpses, weights = att_trans.apply(input_=inputs,
                                                mask=inputs_mask,
                                                attended=attended,
                                                attended_mask=attended_mask)
    assert states.ndim == 3
    assert glimpses.ndim == 3
    assert weights.ndim == 3

    input_vals = numpy.zeros((inp_len, batch_size, inp_dim), dtype=floatX)
    input_mask_vals = numpy.ones((inp_len, batch_size), dtype=floatX)
    attended_vals = numpy.zeros((attended_len, batch_size, attended_dim),
                                dtype=floatX)
    attended_mask_vals = numpy.ones((attended_len, batch_size), dtype=floatX)

    func = theano.function([inputs, inputs_mask, attended, attended_mask],
                           [states, glimpses, weights])
    states_vals, glimpses_vals, weight_vals = func(input_vals, input_mask_vals,
                                                   attended_vals,
                                                   attended_mask_vals)

    assert states_vals.shape == input_vals.shape
    assert glimpses_vals.shape == (inp_len, batch_size, attended_dim)
    assert weight_vals.shape == (inp_len, batch_size, attended_len)

    # Test SequenceGenerator using AttentionTransition
    generator = SequenceGenerator(LinearReadout(
        readout_dim=inp_dim,
        source_names=["state"],
        emitter=TestEmitter(name="emitter"),
        name="readout"),
                                  transition=transition,
                                  attention=attention,
                                  weights_init=IsotropicGaussian(0.01),
                                  biases_init=Constant(0),
                                  name="generator")

    outputs = tensor.tensor3('outputs')
    costs = generator.cost(outputs,
                           attended=attended,
                           attended_mask=attended_mask)
    costs_vals = costs.eval({
        outputs: input_vals,
        attended: attended_vals,
        attended_mask: attended_mask_vals
    })
    assert costs_vals.shape == (inp_len, batch_size)

    results = (generator.generate(n_steps=n_steps,
                                  batch_size=attended.shape[1],
                                  attended=attended,
                                  attended_mask=attended_mask))
    assert len(results) == 5
    states_vals, outputs_vals, glimpses_vals, weights_vals, costs_vals = (
        theano.function([attended, attended_mask],
                        results)(attended_vals, attended_mask_vals))
    assert states_vals.shape == (n_steps, batch_size, inp_dim)
    assert states_vals.shape == outputs_vals.shape
    assert glimpses_vals.shape == (n_steps, batch_size, attended_dim)
    assert weights_vals.shape == (n_steps, batch_size, attended_len)
    assert costs_vals.shape == (n_steps, batch_size)
Example #38
0
cg = ComputationGraph(cost)
model = Model(cost)

transition_matrix = VariableFilter(
            theano_name_regex = "state_to_state")(cg.parameters)
for matr in transition_matrix:
    matr.set_value(0.98*np.eye(hidden_size_recurrent, dtype = floatX))

readouts = VariableFilter( applications = [generator.readout.readout],
    name_regex = "output")(cg.variables)[0]

mean, sigma, corr, weight, penup = emitter.components(readouts)

emit = generator.generate(
  n_steps = 400,
  batch_size = 8,
  iterate = True
  )[-2]

#ipdb.set_trace()

function([x, x_mask], cost)(x_tr[0],x_tr[1])
emit_fn = ComputationGraph(emit).get_theano_function()
emit_fn()

min_sigma = sigma.min(axis=(0,2)).copy(name="sigma_min")
mean_sigma = sigma.mean(axis=(0,2)).copy(name="sigma_mean")
max_sigma = sigma.max(axis=(0,2)).copy(name="sigma_max")

min_mean = mean.min(axis=(0,2)).copy(name="mu_min")
mean_mean = mean.mean(axis=(0,2)).copy(name="mu_mean")
Example #39
0
class NoLookupDecoder(Initializable):
    """This is the decoder implementation without embedding layer or
    softmax. The target sentence is represented as a sequence of #
    vectors as defined by the sparse feature map.
    """
    def __init__(self,
                 vocab_size,
                 embedding_dim,
                 state_dim,
                 att_dim,
                 maxout_dim,
                 representation_dim,
                 attention_strategy='content',
                 attention_sources='s',
                 readout_sources='sfa',
                 memory='none',
                 memory_size=500,
                 seq_len=50,
                 init_strategy='last',
                 theano_seed=None,
                 **kwargs):
        """Creates a new decoder brick without embedding.
        
        Args:
            vocab_size (int): Target language vocabulary size
            embedding_dim (int): Size of feedback embedding layer
            state_dim (int): Number of hidden units
            att_dim (int): Size of attention match vector
            maxout_dim (int): Size of maxout layer
            representation_dim (int): Dimension of source annotations
            attention_strategy (string): Which attention should be used
                                         cf.  ``_initialize_attention``
            attention_sources (string): Defines the sources used by the 
                                        attention model 's' for decoder
                                        states, 'f' for feedback
            readout_sources (string): Defines the sources used in the 
                                      readout network. 's' for decoder
                                      states, 'f' for feedback, 'a' for
                                      attention (context vector)
            memory (string): Which external memory should be used
                             (cf.  ``_initialize_attention``)
            memory_size (int): Size of the external memory structure
            seq_len (int): Maximum sentence length
            init_strategy (string): How to initialize the RNN state
                                    (cf.  ``GRUInitialState``)
            theano_seed: Random seed
        """
        super(NoLookupDecoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.representation_dim = representation_dim
        self.theano_seed = theano_seed

        # Initialize gru with special initial state
        self.transition = GRUInitialState(attended_dim=state_dim,
                                          init_strategy=init_strategy,
                                          dim=state_dim,
                                          activation=Tanh(),
                                          name='decoder')

        # Initialize the attention mechanism
        att_dim = att_dim if att_dim > 0 else state_dim
        self.attention, src_names = _initialize_attention(
            attention_strategy, seq_len, self.transition, representation_dim,
            att_dim, attention_sources, readout_sources, memory, memory_size)

        # Initialize the readout, note that SoftmaxEmitter emits -1 for
        # initial outputs which is used by LookupFeedBackWMT15
        maxout_dim = maxout_dim if maxout_dim > 0 else state_dim
        readout = Readout(
            source_names=src_names,
            readout_dim=embedding_dim,
            emitter=NoLookupEmitter(initial_output=-1,
                                    readout_dim=embedding_dim,
                                    cost_brick=SquaredError()),
            #                        cost_brick=CategoricalCrossEntropy()),
            feedback_brick=TrivialFeedback(output_dim=embedding_dim),
            post_merge=InitializableFeedforwardSequence([
                Bias(dim=maxout_dim, name='maxout_bias').apply,
                Maxout(num_pieces=2, name='maxout').apply,
                Linear(input_dim=maxout_dim / 2,
                       output_dim=embedding_dim,
                       use_bias=False,
                       name='softmax0').apply,
                Logistic(name='softmax1').apply
            ]),
            merged_dim=maxout_dim)

        # Build sequence generator accordingly
        self.sequence_generator = SequenceGenerator(
            readout=readout,
            transition=self.transition,
            attention=self.attention,
            fork=Fork([
                name
                for name in self.transition.apply.sequences if name != 'mask'
            ],
                      prototype=Linear()))

        self.children = [self.sequence_generator]

    @application(inputs=[
        'representation', 'representation_mask', 'target_sentence_mask',
        'target_sentence'
    ],
                 outputs=['cost'])
    def cost(self, representation, representation_mask, target_sentence,
             target_sentence_mask):

        target_sentence = target_sentence.T
        target_sentence_mask = target_sentence_mask.T

        # Get the cost matrix
        cost = self.sequence_generator.cost_matrix(
            **{
                'mask': target_sentence_mask,
                'outputs': target_sentence,
                'attended': representation,
                'attended_mask': representation_mask
            })

        return (cost * target_sentence_mask).sum() / \
            target_sentence_mask.shape[1]

    @application
    def generate(self, source_shape, representation, **kwargs):
        return self.sequence_generator.generate(
            n_steps=2 * source_shape[1],
            batch_size=source_shape[0],
            attended=representation,
            attended_mask=tensor.ones(source_shape).T,
            **kwargs)
Example #40
0
        extensions=[
            FinishAfter(),
            TrainingDataMonitoring([cost], prefix="this_step",
                                           after_batch=True),
            TrainingDataMonitoring([cost], prefix="average",
                                           every_n_batches=100),
            Checkpoint(args.model, every_n_epochs=5),
            Printing(every_n_batches=100)])
    main_loop.run()

elif args.mode == "retrain":
    main_loop = load(open(args.model, "rb"))
    main_loop.run()

elif args.mode == "sample":
    main_loop = load(open(args.model, "rb"))
    # get the one and only brick in the computation graph
    generator = main_loop.model.get_top_bricks()[0]

    sample = ComputationGraph(generator.generate(
        n_steps = args.sample_size,
        batch_size = 1,
        iterate = True
    )).get_theano_function()

    states, outputs, costs = [data[:, 0] for data in sample()]

    print "".join(corpus.decode(outputs))
else:
    assert False