def create_kim_cnn(layer0_input, embedding_size, input_len, config, pref): ''' One layer convolution with different filter-sizes and maxpooling ''' filter_width_list = [ int(fw) for fw in config[pref + '_filterwidth'].split() ] print filter_width_list num_filters = int(config[pref + '_num_filters']) #num_filters /= len(filter_width_list) totfilters = 0 for i, fw in enumerate(filter_width_list): num_feature_map = input_len - fw + 1 #39 conv = Convolutional(image_size=(input_len, embedding_size), filter_size=(fw, embedding_size), num_filters=min(int(config[pref + '_maxfilter']), num_filters * fw), num_channels=1) totfilters += conv.num_filters initialize2(conv, num_feature_map) conv.name = pref + 'conv_' + str(fw) convout = conv.apply(layer0_input) pool_layer = MaxPooling(pooling_size=(num_feature_map, 1)) pool_layer.name = pref + 'pool_' + str(fw) act = Rectifier() act.name = pref + 'act_' + str(fw) outpool = act.apply(pool_layer.apply(convout)).flatten(2) if i == 0: outpools = outpool else: outpools = T.concatenate([outpools, outpool], axis=1) name_rep_len = totfilters return outpools, name_rep_len
def create_kim_cnn(layer0_input, embedding_size, input_len, config, pref): ''' One layer convolution with different filter-sizes and maxpooling ''' filter_width_list = [int(fw) for fw in config[pref + '_filterwidth'].split()] print filter_width_list num_filters = int(config[pref+'_num_filters']) #num_filters /= len(filter_width_list) totfilters = 0 for i, fw in enumerate(filter_width_list): num_feature_map = input_len - fw + 1 #39 conv = Convolutional( image_size=(input_len, embedding_size), filter_size=(fw, embedding_size), num_filters=min(int(config[pref + '_maxfilter']), num_filters * fw), num_channels=1 ) totfilters += conv.num_filters initialize2(conv, num_feature_map) conv.name = pref + 'conv_' + str(fw) convout = conv.apply(layer0_input) pool_layer = MaxPooling( pooling_size=(num_feature_map,1) ) pool_layer.name = pref + 'pool_' + str(fw) act = Rectifier() act.name = pref + 'act_' + str(fw) outpool = act.apply(pool_layer.apply(convout)).flatten(2) if i == 0: outpools = outpool else: outpools = T.concatenate([outpools, outpool], axis=1) name_rep_len = totfilters return outpools, name_rep_len
def create_yy_cnn(numConvLayer, conv_input, embedding_size, input_len, config, pref): ''' CNN with several layers of convolution, each with specific filter size. Maxpooling at the end. ''' filter_width_list = [ int(fw) for fw in config[pref + '_filterwidth'].split() ] base_num_filters = int(config[pref + '_num_filters']) assert len(filter_width_list) == numConvLayer convs = [] fmlist = [] last_fm = input_len for i in range(numConvLayer): fw = filter_width_list[i] num_feature_map = last_fm - fw + 1 #39 conv = Convolutional(image_size=(last_fm, embedding_size), filter_size=(fw, embedding_size), num_filters=min(int(config[pref + '_maxfilter']), base_num_filters * fw), num_channels=1) fmlist.append(num_feature_map) last_fm = num_feature_map embedding_size = conv.num_filters convs.append(conv) initialize(convs) for i, conv in enumerate(convs): conv.name = pref + '_conv' + str(i) conv_input = conv.apply(conv_input) conv_input = conv_input.flatten().reshape( (conv_input.shape[0], 1, fmlist[i], conv.num_filters)) lastconv = conv lastconv_out = conv_input pool_layer = MaxPooling(pooling_size=(last_fm, 1)) pool_layer.name = pref + '_pool_' + str(fw) act = Rectifier() act.name = 'act_' + str(fw) outpool = act.apply(pool_layer.apply(lastconv_out).flatten(2)) return outpool, lastconv.num_filters
def create_yy_cnn(numConvLayer, conv_input, embedding_size, input_len, config, pref): ''' CNN with several layers of convolution, each with specific filter size. Maxpooling at the end. ''' filter_width_list = [int(fw) for fw in config[pref + '_filterwidth'].split()] base_num_filters = int(config[pref + '_num_filters']) assert len(filter_width_list) == numConvLayer convs = []; fmlist = [] last_fm = input_len for i in range(numConvLayer): fw = filter_width_list[i] num_feature_map = last_fm - fw + 1 #39 conv = Convolutional( image_size=(last_fm, embedding_size), filter_size=(fw, embedding_size), num_filters=min(int(config[pref + '_maxfilter']), base_num_filters * fw), num_channels=1 ) fmlist.append(num_feature_map) last_fm = num_feature_map embedding_size = conv.num_filters convs.append(conv) initialize(convs) for i, conv in enumerate(convs): conv.name = pref+'_conv' + str(i) conv_input = conv.apply(conv_input) conv_input = conv_input.flatten().reshape((conv_input.shape[0], 1, fmlist[i], conv.num_filters)) lastconv = conv lastconv_out = conv_input pool_layer = MaxPooling( pooling_size=(last_fm,1) ) pool_layer.name = pref+'_pool_' + str(fw) act = Rectifier(); act.name = 'act_' + str(fw) outpool = act.apply(pool_layer.apply(lastconv_out).flatten(2)) return outpool, lastconv.num_filters