Example #1
0
def optimize_graph_step(graph: Graph, config: Config) -> None:
    """Optimizing graph that imported from tensorflow pb.

    Args:
        graph (Graph): Graph that optimization passes are applying to
        config (Config): Collection of configurations

    Returns:


    """

    pass_remove_identities(graph)
    pass_transpose(graph)

    if config.activate_hard_quantization:
        pass_lookup(graph)
        pass_propagate_quantization_details_into_conv(graph)
        if config.threshold_skipping:
            pass_compute_thresholds(graph)
        pass_pack_weights(graph)
        pass_quantize_convolutions(graph)

    pass_propagate_datatypes(graph)
    pass_propagate_format(graph)

    pass_constant_folding(graph)
    pass_simplify_batchnorm(graph)
    pass_insert_cast(graph)
Example #2
0
    def test_pass_compute_thresholds_for_huge_threshold_values(self) -> None:
        """Test pass."""
        data1 = np.float32(np.random.rand(1, 2, 2, 3))
        data2 = np.float32(np.random.uniform(10 ** (-30), 10 ** (-40), size=(1, 2, 2, 3)))
        graph1 = self.create_sample_graph(data1, data2)

        pass_compute_thresholds(graph1)

        self.assertEqual(graph1.get_op('conv2').has_thresholds, True,
                         '[Failed] Found threshold of Conv not calculated')

        print("Test pass #8-1 compute_thresholds of enormous values passed!")
Example #3
0
    def test_pass_compute_thresholds(self) -> None:
        """Test pass."""
        data1 = np.float32(np.random.rand(1, 2, 2, 3))
        data2 = np.float32(np.random.rand(1, 2, 2, 3))
        graph1 = self.create_sample_graph(data1, data2)

        pass_compute_thresholds(graph1)

        self.assertEqual(graph1.get_op('conv2').has_thresholds, True,
                         '[Failed] Found threshold of Conv not calculated')

        print("Test pass #8 compute_thresholds passed!")