Example #1
0
def test_rank_models():
    RE = RunEngine()

    # Create accurate fit
    motor = SynAxis(name='motor')
    det = SynSignal(name='centroid',
                    func=lambda: 5 * motor.read()['motor']['value'] + 2)
    fit1 = LinearFit('centroid', 'motor', update_every=None, name='Accurate')
    RE(scan([det], motor, -1, 1, 50), fit1)

    # Create inaccurate fit
    det2 = SynSignal(name='centroid',
                     func=lambda: 25 * motor.read()['motor']['value'] + 2)
    fit2 = LinearFit('centroid', 'motor', update_every=None, name='Inaccurate')
    RE(scan([det2], motor, -1, 1, 50), fit2)

    # Create inaccurate fit
    det3 = SynSignal(name='centroid',
                     func=lambda: 12 * motor.read()['motor']['value'] + 2)
    fit3 = LinearFit('centroid',
                     'motor',
                     update_every=None,
                     name='Midly Inaccurate')
    RE(scan([det3], motor, -1, 1, 50), fit3)

    # Rank models
    ranking = rank_models([fit2, fit1, fit3], target=22, x=4)
    assert ranking[0] == fit1
    assert ranking[1] == fit3
    assert ranking[2] == fit2
Example #2
0
    def describe_plans(self):

        from bluesky import RunEngine
        import bluesky.plans as bp
        from bluesky.callbacks.fitting import PeakStats

        start, end = 10, 13
        min_step = 0.01
        max_step = 0.15
        min_change = 1
        steps = 10

        dets = [ self.DEVICES['inj_kicker'].current, self.DEVICES['inj_kicker'].offset ]
        indep = self.DEVICES['inj_kicker'].offset
        
        plan = bp.scan(dets, indep, start, end, steps)

        self.PLANS.append(plan)

        start, end = 11, 12
        steps = 30

        plan2 = bp.scan(dets, indep, start, end, steps)

        self.PLANS.append(plan2)
Example #3
0
def test_rank_models():
    RE = RunEngine()

    #Create accurate fit
    motor = Mover('motor', {'motor': lambda x: x}, {'x': 0})
    det = Reader('det',
                 {'centroid': lambda: 5 * motor.read()['motor']['value'] + 2})
    fit1 = LinearFit('centroid', 'motor', update_every=None, name='Accurate')
    RE(scan([det], motor, -1, 1, 50), fit1)

    #Create inaccurate fit
    det2 = Reader(
        'det', {'centroid': lambda: 25 * motor.read()['motor']['value'] + 2})
    fit2 = LinearFit('centroid', 'motor', update_every=None, name='Inaccurate')
    RE(scan([det2], motor, -1, 1, 50), fit2)

    #Create inaccurate fit
    det3 = Reader(
        'det', {'centroid': lambda: 12 * motor.read()['motor']['value'] + 2})
    fit3 = LinearFit('centroid',
                     'motor',
                     update_every=None,
                     name='Midly Inaccurate')
    RE(scan([det3], motor, -1, 1, 50), fit3)

    #Rank models
    ranking = rank_models([fit2, fit1, fit3], target=22, x=4)
    assert ranking[0] == fit1
    assert ranking[1] == fit3
    assert ranking[2] == fit2
Example #4
0
def test_to_event_model_new_api_e_stop(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api(
        {t: {"data_keys": {"ct": {"units": "arb", "precision": 2}}}}
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    def f(*x):
        if x[0] == "stop":
            return
        source.emit(x)

    RE.subscribe(f)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    rs = d[0]["uid"]
    assert tt
    assert set(p) == {"start", "event", "descriptor"}
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    ll = len(d)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))
    assert d[ll]["run_start"] == rs
    assert set(p) == {"start", "stop", "event", "descriptor"}
Example #5
0
def test_dbfriendly(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    z = t.map(op.add, 1)
    n = ToEventStream(z, "out").DBFriendly()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert isinstance(d[0]["graph"], dict)
    h1 = d[0].get("graph_hash")
    assert h1

    d.clear()
    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    h2 = d[0].get("graph_hash")
    assert h1 == h2
    assert len(d) == 10 + 3

    d.clear()
    z.args = (2, )
    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    h2 = d[0].get("graph_hash")
    assert h1 != h2
    assert len(d) == 10 + 3
Example #6
0
def test_disable(RE, hw):
    det, motor = hw.ab_det, hw.motor
    bec = BestEffortCallback()
    RE.subscribe(bec)

    bec.disable_table()

    RE(scan([det], motor, 1, 5, 5))
    assert bec._table is None

    bec.enable_table()

    RE(scan([det], motor, 1, 5, 5))
    assert bec._table is not None

    bec.peaks.com
    bec.peaks['com']
    assert ast.literal_eval(repr(bec.peaks)) == vars(bec.peaks)

    bec.clear()
    assert bec._table is None

    # smoke test
    bec.disable_plots()
    bec.enable_plots()
    bec.disable_baseline()
    bec.enable_baseline()
    bec.disable_heading()
    bec.enable_heading()
Example #7
0
def test_check_limits(hw):
    det = hw.det
    motor = hw.motor
    # The motor object does not currently implement limits.
    # Use an assert to help us out if this changes in the future.
    assert not hasattr(motor, 'limits')

    # # check_limits should warn if it can't find check_value
    # TODO: Is there _any_ object to test?
    # with pytest.warns(UserWarning):
    #     check_limits(scan([det], motor, -1, 1, 3))

    # monkey-patch some limits
    motor.limits = (-2, 2)
    # check_limits should do nothing here
    check_limits(scan([det], motor, -1, 1, 3))

    # check_limits should error if limits are exceeded only if object raises
    # this object does not raise
    check_limits(scan([det], motor, -3, 3, 3))

    # check_limits should raise if limits are equal only if object raises
    # this object does not raise
    motor.limits = (2, 2)
    check_limits(scan([det], motor, -1, 1, 3))
Example #8
0
def test_disable(RE, hw):
    det, motor = hw.ab_det, hw.motor
    bec = BestEffortCallback()
    RE.subscribe(bec)

    bec.disable_table()

    RE(scan([det], motor, 1, 5, 5))
    assert bec._table is None

    bec.enable_table()

    RE(scan([det], motor, 1, 5, 5))
    assert bec._table is not None

    bec.peaks.com
    bec.peaks['com']
    assert ast.literal_eval(repr(bec.peaks)) == vars(bec.peaks)

    bec.clear()
    assert bec._table is None

    # smoke test
    bec.disable_plots()
    bec.enable_plots()
    bec.disable_baseline()
    bec.enable_baseline()
    bec.disable_heading()
    bec.enable_heading()
Example #9
0
def generate_example_catalog(data_path):
    data_path = Path(data_path)

    def factory(name, doc):
        serializer = Serializer(data_path / 'abc')
        serializer('start', doc)
        return [serializer], []

    RE = RunEngine()
    sd = SupplementalData()
    RE.preprocessors.append(sd)
    sd.baseline.extend([motor1, motor2])
    rr = RunRouter([factory])
    RE.subscribe(rr)
    RE(count([det]))
    RE(count([noisy_det], 5))
    RE(scan([det], motor, -1, 1, 7))
    RE(grid_scan([det4], motor1, -1, 1, 4, motor2, -1, 1, 7, False))
    RE(scan([det], motor, -1, 1, motor2, -1, 1, 5))
    RE(count([noisy_det, det], 5))
    RE(count([random_img], 5))
    RE(count([img], 5))

    def factory(name, doc):
        serializer = Serializer(data_path / 'xyz')
        serializer('start', doc)
        return [serializer], []

    RE = RunEngine()
    rr = RunRouter([factory])
    RE.subscribe(rr)
    RE(count([det], 3))

    catalog_filepath = data_path / 'catalog.yml'
    with open(catalog_filepath, 'w') as file:
        file.write(f'''
sources:
  abc:
    description: Some imaginary beamline
    driver: bluesky-jsonl-catalog
    container: catalog
    args:
      paths: {Path(data_path) / 'abc' / '*.jsonl'}
      handler_registry:
        NPY_SEQ: ophyd.sim.NumpySeqHandler
    metadata:
      beamline: "00-ID"
  xyz:
    description: Some imaginary beamline
    driver: bluesky-jsonl-catalog
    container: catalog
    args:
      paths: {Path(data_path) / 'xyz' / '*.jsonl'}
      handler_registry:
        NPY_SEQ: ophyd.sim.NumpySeqHandler
    metadata:
      beamline: "99-ID"
''')
    return str(catalog_filepath)
Example #10
0
    def my_plan():
        motor = hw.motor
        det = hw.det

        motor.delay = 1

        plan = bp.scan([det], motor, -5, 5, 25)
        plan = subs_wrapper(bp.scan([det], motor, -5, 5, 25),
                            LivePlot(det.name, motor.name))
        return (yield from plan)
Example #11
0
def test_per_step(RE, hw):
    # Check default behavior, using one motor and then two.
    RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=one_nd_step))
    RE(
        scan([hw.det],
             hw.motor,
             -1,
             1,
             hw.motor2,
             -1,
             1,
             3,
             per_step=one_nd_step))
    RE(inner_product_scan([hw.det], 3, hw.motor, -1, 1, per_step=one_nd_step))
    RE(
        inner_product_scan([hw.det],
                           3,
                           hw.motor,
                           -1,
                           1,
                           hw.motor2,
                           -1,
                           1,
                           per_step=one_nd_step))

    # Check that scan still accepts old one_1d_step signature:
    RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=one_1d_step))
    RE(rel_scan([hw.det], hw.motor, -1, 1, 3, per_step=one_1d_step))

    # Test that various error paths include a useful error message identifying
    # that the problem is with 'per_step':

    # You can't usage one_1d_step signature with more than one motor.
    with pytest.raises(TypeError) as excinfo:
        RE(
            scan([hw.det],
                 hw.motor,
                 -1,
                 1,
                 hw.motor2,
                 -1,
                 1,
                 3,
                 per_step=one_1d_step))
    assert excinfo.match("Signature of per_step assumes 1D trajectory")

    # The signature must be either like one_1d_step or one_nd_step:
    def bad_sig(detectors, mtr, step):
        ...

    with pytest.raises(TypeError) as excinfo:
        RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=bad_sig))
    assert excinfo.match("per_step must be a callable with the signature")
Example #12
0
def test_scan_num(RE, hw):
    RE(bp.scan([hw.det], hw.motor1, -1, 1, num=1))
    RE(bp.scan([hw.det], hw.motor1, -1, 1, num=1.0))

    with pytest.raises(ValueError):
        RE(bp.scan([hw.det], hw.motor1, -1, 1, num=0))

    with pytest.raises(ValueError):
        RE(bp.scan([hw.det], hw.motor1, -1, 1, num=0.5))

    with pytest.raises(ValueError):
        RE(bp.scan([hw.det], hw.motor1, -1, 1, num=float('nan')))
Example #13
0
def test_daq_step_scan_args(hw, daq, daq_step_scan):
    """
    Basic args and message inspection tests.

    Can I decorate a scan?
    Can I call a decorated scan at all?
    Does a decorated scan produce the messages I expect?
    """
    logger.debug('test_daq_step_scan_args')

    def assert_daq_messages(msg_list):
        """
        Make sure the msg_list is properly mutated.

        Checks for a daq configure message with controls arg
        Checks for a daq trigger/read in every bundle
        """
        found_configure = False
        found_trigger = False
        found_read = False

        for msg in msg_list:
            if msg.command == 'configure' and msg.obj is daq:
                found_configure = True
                assert msg.kwargs['controls'] == [hw.motor]
            elif msg.command == 'trigger' and msg.obj is daq:
                found_trigger = True
            elif msg.command == 'read' and msg.obj is daq:
                found_read = True

        assert found_configure, 'Did not find daq configure in msg list.'
        assert found_trigger, 'Did not find daq trigger in msg list.'
        assert found_read, 'Did not find daq read in msg list.'

    daq_with_det = list(daq_step_scan([hw.det], hw.motor, 0, 10, 11, events=10,
                                      record=False, use_l3t=True))
    assert_daq_messages(daq_with_det)
    daq_none_det = list(daq_step_scan([], hw.motor, 0, 10, 11, events=10,
                                      record=False, use_l3t=True))
    assert_daq_messages(daq_none_det)

    def assert_no_lost_msg(daq_msg_list, nodaq_msg_list):
        """
        Make sure no message from the original plan is lost.
        """
        daq_without_daq = [msg for msg in daq_msg_list if msg.obj is not daq]
        assert daq_without_daq == nodaq_msg_list

    nodaq_with_det = list(bp.scan([hw.det], hw.motor, 0, 10, 11))
    assert_no_lost_msg(nodaq_with_det, nodaq_with_det)

    nodaq_none_det = list(bp.scan([], hw.motor, 0, 10, 11))
    assert_no_lost_msg(nodaq_none_det, nodaq_none_det)
Example #14
0
def test_old_module_name(hw):
    det = hw.det
    motor = hw.motor
    motor1 = hw.motor1
    motor2 = hw.motor2
    from bluesky.plan_tools import (print_summary, print_summary_wrapper,
                                    plot_raster_path)
    with pytest.warns(UserWarning):
        print_summary(scan([det], motor, -1, 1, 10))
    with pytest.warns(UserWarning):
        list(print_summary_wrapper(scan([det], motor, -1, 1, 10)))
    with pytest.warns(UserWarning):
        plan = grid_scan([det], motor1, -5, 5, 10, motor2, -7, 7, 15, True)
        plot_raster_path(plan, 'motor1', 'motor2', probe_size=.3)
Example #15
0
def _generate_simulation_data():
    """ priviate function to insert data to exp_db
    """
    if os.environ['XPDAN_SETUP'] != str(2):
        raise RuntimeError("ONLY insert data if you are running"
                           "simulation")
    # simulated det
    pe1c = SimulatedPE1C('pe1c',
                         {'pe1_image': lambda: np.random.randn(25, 25)})
    # TODO : add md schema later
    RE = RunEngine({})
    RE.subscribe(an_glbl['exp_db'].db.insert, 'all', )
    RE(count([pe1c]))
    RE(scan([pe1c], motor, 1, 5, 5))
    RE(scan([pe1c], motor, 1, 10, 10))
Example #16
0
def test_SaveTiff(RE, hw, tmpdir):
    sbc = SaveTiff(
        handler_reg={"NPY_SEQ": NumpySeqHandler},
        template="{base_folder}/{folder_prefix}/{start[hello]}{"
        "__independent_vars__}{ext}",
        base_folders=tmpdir.strpath,
    )
    L = []
    RE.subscribe(lambda *x: L.append(x))
    RE(
        bp.scan(
            [hw.img],
            hw.motor,
            0,
            10,
            1,
            md={
                "hello": "world",
                "folder_tag_list": ["a", "b", "c"],
                "a": "a",
                "b": "b",
                "c": "c",
            },
        )
    )

    for n, d in L:
        sbc(n, d)
        if n == "event":
            assert os.path.exists(
                tmpdir.strpath + "/a/b/c//world_motor_0,000_arb_img.tiff"
            )
Example #17
0
def test_SaveTiff(RE, hw, tmpdir):
    sbc = SaveTiff(
        handler_reg={"NPY_SEQ": NumpySeqHandler},
        template="{base_folder}/{folder_prefix}/{start[hello]}{"
        "__independent_vars__}{ext}",
        base_folders=tmpdir.strpath,
    )
    L = []
    RE.subscribe(lambda *x: L.append(x))
    RE(
        bp.scan(
            [hw.img],
            hw.motor,
            0,
            10,
            1,
            md={
                "hello": "world",
                "folder_tag_list": ["a", "b", "c"],
                "a": "a",
                "b": "b",
                "c": "c",
            },
        ))

    for n, d in L:
        sbc(n, d)
        if n == "event":
            assert os.path.exists(tmpdir.strpath +
                                  "/a/b/c//world_motor_0,000_arb_img.tiff")
Example #18
0
 def _gen(self):
     return scan(self.detectors,
                 self.motor,
                 self.start,
                 self.stop,
                 self.num,
                 md=self.md)
Example #19
0
 def scan_gui_plan():
     yield from scan(self.dets,
                     self.motor,
                     self.start.value(),
                     self.stop.value(),
                     self.steps.value(),
                     md={'created_by': 'GUI'})
Example #20
0
def scan_bpm(bpm_num, bpm_motor, start, end, step):
    detector_name = 'bpm' + str(bpm_num)
    device_name = 'mbpm' + str(bpm_num)
    motor_name = '_'.join((device_name, bpm_motor))

    detector = globals()[detector_name]
    device = globals()[device_name]
    motor = getattr(device, bpm_motor)
    egu = motor.motor_egu.get()

    plan = bp.scan([detector], motor, start, end, step)
    result_uid = RE(plan)
    table = db[result_uid].table()
    channels = ['A', 'B', 'C', 'D']
    ydata = [table['_'.join((detector_name, ch.lower()))] for ch in channels]
    xdata = table[motor_name]

    plt.xlabel('Motor position ({})'.format(egu))
    plt.ylabel('Currents')
    plt.title('BPM {} Currents vs Motor Position'.format(bpm_num))
    plots = [
        plt.plot(xdata, ydata[i], label=ch) for i, ch in enumerate(channels)
    ]
    plt.legend(channels)
    return result_uid
Example #21
0
def test_live_fit_plot(fresh_RE):
    RE = fresh_RE
    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0)**2 / (2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {
        'A': 2,
        'sigma': lmfit.Parameter('sigma', 3, min=0),
        'x0': -0.2
    }
    livefit = LiveFit(model,
                      'det', {'x': 'motor'},
                      init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color='r')
    lplot = LivePlot('det', 'motor', ax=plt.gca(), marker='o', ls='none')
    RE(scan([det], motor, -1, 1, 50), [lplot, lfplot])

    expected = {'A': 1, 'sigma': 1, 'x0': 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
Example #22
0
def test_live_fit_plot(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip("requires lmfit")

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0)**2 / (2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {
        "A": 2,
        "sigma": lmfit.Parameter("sigma", 3, min=0),
        "x0": -0.2,
    }
    livefit = LiveFit(model,
                      "det", {"x": "motor"},
                      init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color="r")
    lplot = LivePlot("det", "motor", ax=plt.gca(), marker="o", ls="none")
    RE(scan([hw.det], hw.motor, -1, 1, 50), [lplot, lfplot])
    expected = {"A": 1, "sigma": 1, "x0": 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
Example #23
0
def test_scan_vars(RE, daq):
    logger.debug('test_scan_vars')

    daq.configure(events=120)

    scan_vars = ScanVars('TST', name='tst', RE=RE)
    scan_vars.enable()

    check = CheckVals(scan_vars)
    RE.subscribe(check)

    check.plan = 'scan'
    RE(
        scan([det1, det2], motor1, 0, 10, motor2, 20, 0, motor3, 0, 1, motor,
             0, 1, 11))

    check.plan = 'count'
    RE(count([det1, det2], 11))

    def custom(detector):
        for i in range(3):
            yield from create()
            yield from read(detector)
            yield from save()

    check.plan = 'custom'
    daq.configure(duration=4)
    RE(stage_wrapper(run_wrapper(custom(det1)), [det1]))

    scan_vars.disable()

    # Last, let's force an otherwise uncaught error to cover the catch-all
    # try-except block to make sure the log message doesn't error
    scan_vars.start({'motors': 4})
def energy_scan(start, stop, num, flyers=None, name='', **metadata):
    """
    Example
    -------
    >>> RE(energy_scan(11350, 11450, 2))
    """
    if flyers is None:
        flyers = [pb9.enc1, pba2.adc6, pba1.adc7]
    def inner():
        md = {'plan_args': {}, 'plan_name': 'step scan', 'name': name}
        md.update(**metadata)
        yield from bps.open_run(md=md)

    # Start with a step scan.
    plan = bp.scan([hhm_en.energy], hhm_en.energy, start, stop, num, md={'name': name})
    # Wrap it in a fly scan with the Pizza Box.
    plan = bpp.fly_during_wrapper(plan, flyers)
    # Working around a bug in fly_during_wrapper, stage and unstage the pizza box manually.

    for flyer in flyers:
        yield from bps.stage(flyer)
    yield from bps.stage(hhm)

    plan = bpp.pchain(plan)

    yield from plan
Example #25
0
def test_to_event_model_new_api_multi(RE, hw):
    source = Stream()
    stop = FromEventStream("stop", (), source)
    t = FromEventStream(
        "event", ("data", "motor"), source, principle=True, stream_name="hi"
    )
    assert t.principle

    tt = t.zip(stop)
    n = simple_to_event_stream_new_api(
        {
            t: {"data_keys": {"ct": {"units": "arb", "precision": 2}}},
            tt: {
                "name": "final",
                "data_keys": {"ct": {"units": "arb", "precision": 2}},
            },
        },
        hello="world",
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[0]["hello"] == "world"
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    assert d[-3]["name"] == "final"
    assert d[-1]["run_start"]
Example #26
0
def test_to_event_model_new_api_multi_parent(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    t2 = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = simple_to_event_stream_new_api(
        {
            t.zip(t2).pluck(0): {
                "data_keys": {"ct": {"units": "arb", "precision": 2}}
            }
        }
    )
    tt = t.sink_to_list()
    p = n.pluck(0).sink_to_list()
    d = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert tt
    assert set(p) == {"start", "stop", "event", "descriptor"}
    assert d[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert d[1]["data_keys"]["ct"]["units"] == "arb"
    assert d[-1]["run_start"]
Example #27
0
def cam_scan(detectors, camera, motor, start, stop, num, md=None, idle_time=1):

    def per_step(dets, motor, step):
        yield from one_1d_step(dets, motor, step)
        yield from bp.abs_set(camera, 1, wait=True)
        yield from bp.abs_set(camera, 0, wait=True)
        yield from bp.sleep(idle_time)

    if md is None:
        md = {}
    md = ChainMap(
        md,
        {'plan_args': {'detectors': list(map(repr, detectors)), 'num': num,
                       'motor': repr(motor),
                       'start': start, 'stop': stop,
                       'per_step': repr(per_step),
                       'idle_time': float(idle_time)},
         'plan_name': 'cam_scan',
         })


    return (yield from bp.subs_wrapper(
        bp.scan(detectors, motor, start, stop, num, per_step=per_step, md=md),
        LiveTable(detectors + [motor]))
    )
Example #28
0
def basic_scan():
    print('start basic scan')
    basic_scan_plan = scan([], tomo_stage.finex_top, 0, 10, 5)
    basic_scan_gen = yield from basic_scan_plan
    print('done with basic scan')

    return basic_scan_gen
Example #29
0
def test_last_cache(RE, hw):
    source = Stream()
    t = FromEventStream("event", ("data", "motor"), source, principle=True)
    assert t.principle

    n = ToEventStream(
        t, ("ct",), data_key_md={"ct": {"units": "arb"}}
    ).LastCache()
    tt = t.sink_to_list()
    names = n.pluck(0).sink_to_list()
    docs = n.pluck(1).sink_to_list()

    RE.subscribe(unstar(source.emit))
    RE.subscribe(print)

    RE(scan([hw.motor], hw.motor, 0, 9, 10))

    assert len(docs) == 10 + 3 + 2
    assert names[-3] == "descriptor"
    assert names[-2] == "event"
    assert tt
    assert set(names) == {"start", "stop", "event", "descriptor"}
    assert docs[1]["hints"] == {"analyzer": {"fields": ["ct"]}}
    assert docs[1]["data_keys"]["ct"]["units"] == "arb"
    assert docs[-1]["run_start"]
Example #30
0
def test_full_field_tomo_pipeline(RE, hw, db):
    L = []
    rr = RunRouter(
        [lambda x: tomo_callback_factory(x,
                                         publisher=lambda *x: L.append(x),
                                         handler_reg=db.reg.handler_reg)]
    )
    RE.subscribe(rr)
    direct_img = SynSignal(
        func=lambda: np.array(np.random.random((10, 10))),
        name="img",
        labels={"detectors"},
    )
    RE(
        bp.scan(
            [direct_img],
            hw.motor1,
            0,
            180,
            30,
            md={
                "tomo": {
                    "type": "full_field",
                    "rotation": "motor1",
                    "center": 0.0,
                }
            },
        )
    )
    # det1
    # sinogram and recon
    # 30 events + start, stop, descriptor
    assert len(L) == (30 + 2 + 1 + 2) * 2
    assert len(L[7][1]["data"]["img_tomo"].shape) == 3
    assert len(L[6][1]["data"]["img_sinogram"].shape) == 3
Example #31
0
def test_linear_fit():
    #Create RunEngine
    RE = RunEngine()

    #Excepted values of fit
    expected = {'slope': 5, 'intercept': 2}

    #Create simulated devices
    motor = Mover('motor', {'motor': lambda x: x}, {'x': 0})
    det = Reader('det',
                 {'centroid': lambda: 5 * motor.read()['motor']['value'] + 2})

    #Assemble fitting callback
    cb = LinearFit('centroid', 'motor', update_every=None)

    #Scan through variables
    RE(scan([det], motor, -1, 1, 50), cb)

    #Check accuracy of fit
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)

    #Check we create an accurate estimate
    assert np.allclose(cb.eval(x=10), 52, atol=1e-5)
    assert np.allclose(cb.eval(motor=10), 52, atol=1e-5)
    assert np.allclose(cb.backsolve(52)['x'], 10, atol=1e-5)
Example #32
0
    def newport_dscan(self, motor, start, end, nsteps, nEvents, record=None, use_l3t=False, post=False):
        self.cleanup_RE()
        daq.configure(nEvents, record=record, controls=[motor], use_l3t=use_l3t)
        currPos = motor.wm()
        
        # remove backlash for small scans
        motor.mvr(-.1, wait=True)

        try:
            RE(scan([daq], motor, currPos+start, currPos+end, nsteps))
        except Exception:
            logger.debug('RE Exit', exc_info=True)
        finally:
            self.cleanup_RE()

        # move back to starting point and remove backlash
        motor.mv(currPos, wait=True)
        motor.mvr(-0.1, wait=True)
        motor.mv(currPos)
        
        if post:
            run = get_run()
            message = 'scan {name} from {min1:.3f} to {max1:.3f} in {num1} steps'.format(name=motor.name,
                        min1=start+currPos,max1=end+currPos,
                        num1=nsteps)
            self.elog.post(message,run=int(run))
Example #33
0
def MED(init_gas, other_gas, minT, maxT, num_steps, num_steady, num_trans, num_loops=2):
    """
    1. Start flowing the initial gas.
    2. Scan the temperature from minT to maxT in `num_steps` evenly-spaced steps.
    3. Hold temperature at maxT and take  `num_steady` images.
    4. Repeat (2) and (3) `num_loops` times.
    5. Switch the gas to `other_gas` and take `num_trans` acquisitions.
    6. Switch it back and take another `num_trans` acquisitions.

    Example
    -------
    Set the gasses. They can be in any other, nothing to do with
    the order they are used in the plan.
    >>> gas.gas_list = ['O2', 'CO2']

    Optionally, preview the plan.
    >>> print_summary(MED('O2', 'C02', 200, 300, 21, 20, 60))

    Execute it.
    >>> RE(MED('O2', 'C02', 200, 300, 21, 20, 60))

    """
    # Step 1
    yield from abs_set(gas, init_gas)
    # Steps 2 and 3 in a loop.
    for _ in range(num_loops):
        yield from subs_wrapper(scan([pe1, gas.current_gas], eurotherm, minT, maxT, num_steps),
                            LiveTable([eurotherm, gas.current_gas]))
        yield from subs_wrapper(count([pe1], num_steady), LiveTable([]))
    # Step 4
    yield from abs_set(gas, other_gas)
    yield from subs_wrapper(count([pe1], num_steady), LiveTable([]))
    # Step 6
    yield from abs_set(gas, init_gas)
    yield from subs_wrapper(count([pe1], num_steady), LiveTable([]))
Example #34
0
def stepping_ct(dets, exposure, motor, start, stop, *, md=None, num=3):
    """Take data at several points along the y-direction"""
    _md = md or {}
    sp_md = yield from _xpd_pre_plan(dets, exposure)
    _md.update(sp_md)

    return (yield from bp.scan(dets, motor, start, stop, num, md=_md))
Example #35
0
def ascan_wimagerh5_slow(self,
                         imagerh5,
                         motor,
                         start,
                         end,
                         nsteps,
                         nEvents,
                         record=True):
    plan_duration = (nsteps * nEvents / 120. + 0.3 * (nsteps - 1) + 4) * 10
    try:
        imagerh5.prepare(nSec=plan_duration)
    except:
        print('imager preparation failed')
        return
    daq.configure(nEvents, record=record, controls=[motor])
    this_plan = scan([daq], motor, start, end, nsteps)
    #we assume DAQ runs at 120Hz (event code 40 or 140)
    #       a DAQ transition time of 0.3 seconds
    #       a DAQ start time of about 1 sec
    #       two extra seconds.
    #       one extra second to wait for hdf5 file to start being written
    imagerh5.write()
    time.sleep(1)
    RE(this_plan)

    imagerh5.write_stop()
Example #36
0
def cam_scan(detectors, camera, motor, start, stop, num, md=None, idle_time=1):

    def per_step(dets, motor, step):
        yield from one_1d_step(dets, motor, step)
        yield from bp.abs_set(camera, 1, wait=True)
        yield from bp.abs_set(camera, 0, wait=True)
        yield from bp.sleep(idle_time)

    if md is None:
        md = {}
    md = ChainMap(
        md,
        {'plan_args': {'detectors': list(map(repr, detectors)), 'num': num,
                       'motor': repr(motor),
                       'start': start, 'stop': stop,
                       'per_step': repr(per_step),
                       'idle_time': float(idle_time)},
         'plan_name': 'cam_scan',
         })


    return (yield from bp.subs_wrapper(
        bp.scan(detectors, motor, start, stop, num, per_step=per_step, md=md),
        LiveTable(detectors + [motor]))
    )
Example #37
0
def Tramp(dets, exposure, Tstart, Tstop, Tstep, *, md=None):
    """
    Scan over temeprature controller in steps.

    temeprature steps are defined by starting point,
    stoping point and step size

    Parameters
    ----------
    detectors : list
        list of 'readable' objects
    exposure : float
        exposure time at each temeprature step in seconds
    Tstart : float
        starting point of temperature sequence
    Tstop : float
        stoping point of temperature sequence
    Tstep : float
        step size between Tstart and Tstop of this sequence
    md : dict, optional
        extra metadata

    Note
    ----
    temperature controller that is driven will always be the one configured in
    global state. Please refer to http://xpdacq.github.io for more information
    """

    pe1c, = dets
    if md is None:
        md = {}
    # setting up area_detector
    (num_frame, acq_time, computed_exposure) = _configure_pe1c(exposure)
    # compute Nsteps
    (Nsteps, computed_step_size) = _nstep(Tstart, Tstop, Tstep)
    # update md
    _md = ChainMap(md, {'sp_time_per_frame': acq_time,
                        'sp_num_frames': num_frame,
                        'sp_requested_exposure': exposure,
                        'sp_computed_exposure': computed_exposure,
                        'sp_type': 'Tramp',
                        'sp_startingT': Tstart,
                        'sp_endingT': Tstop,
                        'sp_requested_Tstep': Tstep,
                        'sp_computed_Tstep': computed_step_size,
                        'sp_Nsteps': Nsteps,
                        # need a name that shows all parameters values
                        # 'sp_name': 'Tramp_<exposure_time>',
                        'sp_uid': str(uuid.uuid4()),
                        'sp_plan_name': 'Tramp'})
    plan = bp.scan([glbl.area_det], glbl.temp_controller, Tstart, Tstop,
                   Nsteps, md=_md)
    plan = bp.subs_wrapper(plan,
                           LiveTable([glbl.area_det, glbl.temp_controller]))
    yield from plan
Example #38
0
def test_hints(RE, hw):
    motor = hw.motor
    expected_hint = {'fields': [motor.name]}
    assert motor.hints == expected_hint
    collector = []

    def collect(*args):
        collector.append(args)

    RE(scan([], motor, 1, 2, 2), {'descriptor': collect})
    name, doc = collector.pop()
    assert doc['hints'][motor.name] == expected_hint
Example #39
0
def test_peak_statistics(RE):
    """peak statistics calculation on simple gaussian function
    """
    x = 'motor'
    y = 'det'
    ps = PeakStats(x, y)
    RE.subscribe(ps)
    RE(scan([det], motor, -5, 5, 100))

    np.allclose(ps.cen, 0, atol=1e-6)
    np.allclose(ps.com, 0, atol=1e-6)
    fwhm_gauss = 2*np.sqrt(2*np.log(2)) # theoretical value with std=1
    np.allclose(ps.fwhm, fwhm_gauss, atol=1e-2)
Example #40
0
def test_per_step(RE, hw):
    # Check default behavior, using one motor and then two.
    RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=one_nd_step))
    RE(scan([hw.det],
            hw.motor, -1, 1,
            hw.motor2, -1, 1,
            3,
            per_step=one_nd_step))
    RE(inner_product_scan([hw.det], 3, hw.motor, -1, 1, per_step=one_nd_step))
    RE(inner_product_scan([hw.det],
                          3,
                          hw.motor, -1, 1,
                          hw.motor2, -1, 1,
                          per_step=one_nd_step))

    # Check that scan still accepts old one_1d_step signature:
    RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=one_1d_step))
    RE(rel_scan([hw.det], hw.motor, -1, 1, 3, per_step=one_1d_step))

    # Test that various error paths include a useful error message identifying
    # that the problem is with 'per_step':

    # You can't usage one_1d_step signature with more than one motor.
    with pytest.raises(TypeError) as exc:
        RE(scan([hw.det],
                hw.motor, -1, 1,
                hw.motor2, -1, 1,
                3,
                per_step=one_1d_step))
    assert "Signature of per_step assumes 1D trajectory" in str(exc)

    # The signature must be either like one_1d_step or one_nd_step:
    def bad_sig(detectors, mtr, step):
        ...

    with pytest.raises(TypeError) as exc:
        RE(scan([hw.det], hw.motor, -1, 1, 3, per_step=bad_sig))
    assert "per_step must be a callable with the signature" in str(exc)
Example #41
0
def test_peak_statistics_compare_chx(RE):
    """This test focuses on gaussian function with noise.
    """
    s = np.random.RandomState(1)
    noisy_det_fix = SynGauss('noisy_det_fix', motor, 'motor', center=0, Imax=1,
                              noise='uniform', sigma=1, noise_multiplier=0.1, random_state=s)
    x = 'motor'
    y = 'noisy_det_fix'
    ps = PeakStats(x, y)
    RE.subscribe(ps)

    RE(scan([noisy_det_fix], motor, -5, 5, 100))
    ps_chx = get_ps(ps.x_data, ps.y_data)

    assert np.allclose(ps.cen, ps_chx['cen'], atol=1e-6)
    assert np.allclose(ps.com, ps_chx['com'], atol=1e-6)
    assert np.allclose(ps.fwhm, ps_chx['fwhm'], atol=1e-6)
Example #42
0
def test_SaveBaseClass(RE, hw, tmpdir):
    sbc = SaveBaseClass(
        "{base_folder}/{folder_prefix}/{start[hello]}{"
        "__independent_vars__}",
        handler_reg={},
        base_folders=tmpdir.strpath,
    )
    L = []
    RE.subscribe(lambda *x: L.append(x))
    RE(
        bp.scan(
            [hw.direct_img],
            hw.motor,
            0,
            10,
            1,
            md={
                "hello": "world",
                "folder_tag_list": ["a", "b", "c"],
                "a": "a",
                "b": "b",
                "c": "c",
            },
        )
    )

    name_param = {
        "start": (
            "start_template",
            "{base_folder}/a/b/c//world{__independent_vars__}",
        ),
        "event": (
            "filenames",
            [f"{tmpdir.strpath}/a/b/c//world_motor_0,000_arb_"],
        ),
    }

    for n, d in L:
        sbc(n, d)
        key = name_param.get(n, "")
        if key:
            assert getattr(sbc, key[0], "") == name_param[n][1]
Example #43
0
def test_live_fit():
    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    def gaussian(x, A, sigma, x0):
        return A*np.exp(-(x - x0)**2/(2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {'A': 2,
                  'sigma': lmfit.Parameter('sigma', 3, min=0),
                  'x0': -0.2}
    cb = LiveFit(model, 'det', {'x': 'motor'}, init_guess)
    RE(scan([det], motor, -1, 1, 100), cb)
    # results are in cb.result.values

    expected = {'A': 1, 'sigma': 1, 'x0': 0}
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)
Example #44
0
def test_plan_md(RE, hw):
    mutable = []
    md = {'color': 'red'}

    def collector(name, doc):
        mutable.append(doc)

    # test genereator
    mutable.clear()
    RE(count([hw.det], md=md), collector)
    assert 'color' in mutable[0]

    # test Plan with explicit __init__
    mutable.clear()
    RE(bp.count([hw.det], md=md), collector)
    assert 'color' in mutable[0]

    # test Plan with implicit __init__ (created via metaclasss)
    mutable.clear()
    RE(bp.scan([hw.det], hw.motor, 1, 2, 2, md=md), collector)
    assert 'color' in mutable[0]
Example #45
0
def test_live_fit_plot(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))

    model = lmfit.Model(gaussian)
    init_guess = {'A': 2,
                  'sigma': lmfit.Parameter('sigma', 3, min=0),
                  'x0': -0.2}
    livefit = LiveFit(model, 'det', {'x': 'motor'}, init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color='r')
    lplot = LivePlot('det', 'motor', ax=plt.gca(), marker='o', ls='none')
    RE(scan([hw.det], hw.motor, -1, 1, 50), [lplot, lfplot])
    expected = {'A': 1, 'sigma': 1, 'x0': 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
Example #46
0
def test_save_server(RE, hw, tmpdir):
    L = []
    RE.subscribe(lambda *x: L.append(x))
    RE.subscribe(
        RunRouter(
            [setup_saver],
            base_folders=tmpdir.strpath,
            template="{base_folder}/{folder_prefix}/"
            "{start[analysis_stage]}/"
            "{start[sample_name]}_"
            "{human_timestamp}_"
            "{__independent_vars__}"
            "{start[uid]:.6}_"
            "{event[seq_num]:04d}{ext}",
            handler_reg={"NPY_SEQ": NumpySeqHandler},
        )
    )
    RE(
        bp.scan(
            [hw.img],
            hw.motor,
            0,
            10,
            1,
            md={
                "sample_name": "world",
                "folder_tag_list": ["a", "b", "c"],
                "a": "a",
                "b": "b",
                "c": "c",
                "analysis_stage": "dark_sub",
            },
        )
    )

    for n, d in L:
        if n == "event":
            start = L[0][1]
            s = f"/a/b/c//{start['analysis_stage']}/world_{_timestampstr(start['time'])}_motor_0,000_arb_{start['uid']:.6}_{d['seq_num']:04d}_img.tiff"
            assert os.path.exists(tmpdir.strpath + s)
Example #47
0
def test_live_fit(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip("requires lmfit")

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))

    model = lmfit.Model(gaussian)
    init_guess = {
        "A": 2,
        "sigma": lmfit.Parameter("sigma", 3, min=0),
        "x0": -0.2,
    }
    cb = LiveFit(model, "det", {"x": "motor"}, init_guess, update_every=50)
    RE(scan([hw.det], hw.motor, -1, 1, 50), cb)
    # results are in cb.result.values

    expected = {"A": 1, "sigma": 1, "x0": 0}
    for k, v in expected.items():
        assert np.allclose(cb.result.values[k], v, atol=1e-6)
Example #48
0
def test_live_fit_plot(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip("requires lmfit")

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))

    model = lmfit.Model(gaussian)
    init_guess = {
        "A": 2,
        "sigma": lmfit.Parameter("sigma", 3, min=0),
        "x0": -0.2,
    }
    livefit = LiveFit(
        model, "det", {"x": "motor"}, init_guess, update_every=50
    )
    lfplot = LiveFitPlot(livefit, color="r")
    lplot = LivePlot("det", "motor", ax=plt.gca(), marker="o", ls="none")
    RE(scan([hw.det], hw.motor, -1, 1, 50), [lplot, lfplot])
    expected = {"A": 1, "sigma": 1, "x0": 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
Example #49
0
def test_strip_dep_var(RE, hw):

    L = []
    LL = []
    RE.subscribe(lambda *x: L.append(x))
    sdv = StripDepVar()
    RE.subscribe(lambda *x: LL.append(sdv(*x)))

    RE(scan([hw.ab_det], hw.motor1, 0, 10, 10))

    for (n1, d1), (n2, d2) in zip(L, LL):
        assert n1 == n2
        if n1 == "descriptor":
            assert d1 != d2
            for k in ["data_keys", "hints", "configuration", "object_keys"]:
                for kk in ["det"]:
                    assert kk not in d2[k]
        elif n1 == "event":
            assert d1 != d2
            for k in ["data", "timestamps"]:
                for kk in ["det_a", "det_b"]:
                    assert kk not in d2[k]
        else:
            assert d1 == d2
Example #50
0
    def run_exp(delay):  # pragma: no cover
        time.sleep(delay)
        print("running exp")

        p = Publisher(proxy[0], prefix=b"an")
        RE.subscribe(p)

        det = SynSignal(func=lambda: np.ones((10, 10)), name="gr")
        RE(
            bp.scan(
                [det],
                hw.motor1,
                0,
                2,
                2,
                md={
                    "tomo": {
                        "type": "full_field",
                        "rotation": "motor1",
                        "center": 1,
                    }
                },
            )
        )
def generate_data(RE):
    # This adds {'proposal_id': 1} to all future runs, unless overridden.
    RE.md['proposal_id'] = 1
    RE(count([det]))
    RE(scan([det], motor, 1, 5, 5))
    RE(scan([det], motor, 1, 10, 10))

    RE.md['proposal_id'] = 2
    RE(count([det]))
    RE(scan([det], motor, -1, 1, 5))
    RE(relative_scan([det], motor, 1, 10, 10))
    RE(scan([det], motor, -1, 1, 1000))

    RE.md['proposal_id'] = 3
    # This adds {'operator': 'Ken'} to all future runs, unless overridden.
    RE.md['operator'] = 'Ken'
    RE(count([det]), purpose='calibration', sample='A')
    RE(scan([det], motor, 1, 10, 10), operator='Dan')  # temporarily overrides Ken
    RE(count([det]), sample='A')  # (now back to Ken)
    RE(count([det]), sample='B')
    RE.md['operator'] = 'Dan'
    RE(count([det]), purpose='calibration')
    RE(scan([det], motor, 1, 10, 10))
    del RE.md['operator']  # clean up by un-setting operator
Example #52
0
def test_with_baseline(RE, hw):
    bec = BestEffortCallback()
    RE.subscribe(bec)
    sd = SupplementalData(baseline=[hw.det])
    RE.preprocessors.append(sd)
    RE(scan([hw.ab_det], hw.motor, 1, 5, 5))
Example #53
0
def escan(*args, **kwargs):
    return (yield from bp.scan(*args, per_step=one_1d_step_pseudo_shutter, **kwargs))
Example #54
0
def test_simple(RE, hw):
    bec = BestEffortCallback()
    RE.subscribe(bec)
    RE(scan([hw.ab_det], hw.motor, 1, 5, 5))
Example #55
0
def generate_example_catalog(data_path):
    data_path = Path(data_path)

    def factory(name, doc):
        serializer = Serializer(data_path / 'abc')
        serializer('start', doc)
        return [serializer], []

    RE = RunEngine()
    sd = SupplementalData()
    RE.preprocessors.append(sd)
    sd.baseline.extend([motor1, motor2])
    rr = RunRouter([factory])
    RE.subscribe(rr)
    RE(count([det]))
    RE(count([noisy_det], 5))
    RE(scan([det], motor, -1, 1, 7))
    RE(grid_scan([det4], motor1, -1, 1, 4, motor2, -1, 1, 7, False))
    RE(scan([det], motor, -1, 1, motor2, -1, 1, 5))
    RE(count([noisy_det, det], 5))
    # RE(count([img], 5))

    def factory(name, doc):
        serializer = Serializer(data_path / 'xyz')
        serializer('start', doc)
        return [serializer], []

    RE = RunEngine()
    rr = RunRouter([factory])
    RE.subscribe(rr)
    RE(count([det], 3))

    catalog_filepath = data_path / 'catalog.yml'
    with open(catalog_filepath, 'w') as file:
        file.write(f'''
plugins:
  source:
    - module: intake_bluesky
sources:
  abc:
    description: Some imaginary beamline
    driver: intake_bluesky.jsonl.BlueskyJSONLCatalog
    container: catalog
    args:
      paths: {Path(data_path) / 'abc' / '*.jsonl'}
      handler_registry:
        NPY_SEQ: ophyd.sim.NumpySeqHandler
    metadata:
      beamline: "00-ID"
  xyz:
    description: Some imaginary beamline
    driver: intake_bluesky.jsonl.BlueskyJSONLCatalog
    container: catalog
    args:
      paths: {Path(data_path) / 'xyz' / '*.jsonl'}
      handler_registry:
        NPY_SEQ: ophyd.sim.NumpySeqHandler
    metadata:
      beamline: "99-ID"
''')
    return str(catalog_filepath)
Example #56
0
def absolute_scan(dets, motor, start, finish, intervals, time=None, *,
                  md=None):
    yield from _pre_scan(dets, total_points=intervals + 1, count_time=time)
    return (yield from plans.scan(dets, motor, start, finish, intervals, md=md))
Example #57
0
def cscan(*args, **kwargs):
    return (yield from bp.scan(*args, per_step=one_1d_step_check_beam, **kwargs))
Example #58
0
res = SimpleToEventStream(pipeline, ("result",))

merge = AlignEventStreams(raw_source.starmap(StripDepVar()), res)
merge.sink(pprint)
# send to viz server
merge.starsink(p)

RE.subscribe(lambda *x: raw_source.emit(x))
RE.subscribe(lambda *x: p(*x))
RE.subscribe(lambda *x: time.sleep(.1))
RE.subscribe(lambda *x: time.sleep(1), "stop")

RE(
    pchain(
        bp.scan([hw.noisy_det], hw.motor, 0, 10, 10),
        bp.grid_scan(
            [hw.ab_det],
            hw.motor,
            0,
            5,
            5,
            hw.motor2,
            0,
            5,
            5,
            True,
            per_step=one_nd_step,
        ),
        bp.grid_scan(
            [hw.ab_det],
 def inner():
     yield from bp.scan([camera], motor, start, end, steps)
Example #60
0
def test_blank_hints(RE, hw):
    bec = BestEffortCallback()
    RE.subscribe(bec)
    RE(scan([hw.ab_det], hw.motor, 1, 5, 5, md={'hints': {}}))