class WBTessellation4P(bu.Model): name = 'WB Tessellation 4P' wb_cell = bu.Instance(WBCell4Param) def _wb_cell_default(self): wb_cell = WBCell4Param() self.update_wb_cell_params(wb_cell) return wb_cell tree = ['wb_cell'] plot_backend = 'k3d' n_phi_plus = bu.Int(5, GEO=True) n_x_plus = bu.Int(3, GEO=True) gamma = bu.Float(1.25, GEO=True) a = bu.Float(1000, GEO=True) a_high = bu.Float(2000) b = bu.Float(1000, GEO=True) b_high = bu.Float(2000) c = bu.Float(1000, GEO=True) c_high = bu.Float(2000) show_wireframe = bu.Bool(True, GEO=True) show_nodes = bu.Bool(False, GEO=True) show_node_labels = bu.Bool(False, GEO=True) WIREFRAME = 'k3d_mesh_wireframe' NODES = 'k3d_nodes' NODES_LABELS = 'k3d_nodes_labels' @tr.observe('+GEO', post_init=True) def update_wb_cell(self, event): self.update_wb_cell_params(self.wb_cell) def update_wb_cell_params(self, wb_cell): wb_cell.trait_set( gamma=self.gamma, a=self.a, a_high=self.a_high, b=self.b, b_high=self.b_high, c=self.c, c_high=self.c_high, ) ipw_view = bu.View( # bu.Item('wb_cell'), *WBCell4Param.ipw_view.content, bu.Item('n_phi_plus', latex=r'n_\phi'), bu.Item('n_x_plus', latex=r'n_x'), # bu.Item('show_wireframe'), # bu.Item('show_node_labels'), bu.Item('show_nodes'), ) def get_phi_range(self, delta_phi): return np.arange(-(self.n_phi_plus - 1), self.n_phi_plus) * delta_phi def get_X_phi_range(self, delta_phi, R_0): """Given an array of angles and radius return an array of coordinates """ phi_range = self.get_phi_range((delta_phi)) return np.array([ np.fabs(R_0) * np.sin(phi_range), np.fabs(R_0) * np.cos(phi_range) + R_0 ]).T def get_X_x_range(self, delta_x): return np.arange(-(self.n_x_plus - 1), self.n_x_plus) * delta_x cell_map = tr.Property def _get_cell_map(self): delta_x = self.wb_cell.delta_x delta_phi = self.wb_cell.delta_phi R_0 = self.wb_cell.R_0 X_x_range = self.get_X_x_range(delta_x) X_phi_range = self.get_X_phi_range(delta_phi, R_0) n_idx_x = len(X_x_range) n_idx_phi = len(X_phi_range) idx_x = np.arange(n_idx_x) idx_phi = np.arange(n_idx_phi) idx_x_ic = idx_x[(n_idx_x) % 2::2] idx_x_id = idx_x[(n_idx_x + 1) % 2::2] idx_phi_ic = idx_phi[(n_idx_phi) % 2::2] idx_phi_id = idx_phi[(n_idx_phi + 1) % 2::2] n_ic = len(idx_x_ic) * len(idx_phi_ic) n_id = len(idx_x_id) * len(idx_phi_id) n_cells = n_ic + n_id return n_cells, n_ic, n_id, idx_x_ic, idx_x_id, idx_phi_ic, idx_phi_id n_cells = tr.Property def _get_n_cells(self): n_cells, _, _, _, _, _, _ = self.cell_map return n_cells X_cells_Ia = tr.Property(depends_on='+GEO') '''Array with nodal coordinates of uncoupled cells I - node, a - dimension ''' @tr.cached_property def _get_X_cells_Ia(self): delta_x = self.wb_cell.delta_x delta_phi = self.wb_cell.delta_phi R_0 = self.wb_cell.R_0 X_Ia_wb_rot = np.copy(self.wb_cell.X_Ia) X_Ia_wb_rot[..., 2] -= R_0 X_cIa = np.array([X_Ia_wb_rot], dtype=np.float_) rotation_axes = np.array([[1, 0, 0]], dtype=np.float_) rotation_angles = self.get_phi_range(delta_phi) q = axis_angle_to_q(rotation_axes, rotation_angles) X_dIa = qv_mult(q, X_cIa) X_dIa[..., 2] += R_0 X_x_range = self.get_X_x_range(delta_x) X_phi_range = self.get_X_phi_range(delta_phi, R_0) n_idx_x = len(X_x_range) n_idx_phi = len(X_phi_range) idx_x = np.arange(n_idx_x) idx_phi = np.arange(n_idx_phi) idx_x_ic = idx_x[(n_idx_x) % 2::2] idx_x_id = idx_x[(n_idx_x + 1) % 2::2] idx_phi_ic = idx_phi[(n_idx_phi) % 2::2] idx_phi_id = idx_phi[(n_idx_phi + 1) % 2::2] X_E = X_x_range[idx_x_ic] X_F = X_x_range[idx_x_id] X_CIa = X_dIa[idx_phi_ic] X_DIa = X_dIa[idx_phi_id] expand = np.array([1, 0, 0]) X_E_a = np.einsum('i,j->ij', X_E, expand) X_ECIa = X_CIa[np.newaxis, :, :, :] + X_E_a[:, np.newaxis, np.newaxis, :] X_F_a = np.einsum('i,j->ij', X_F, expand) X_FDIa = X_DIa[np.newaxis, :, :, :] + X_F_a[:, np.newaxis, np.newaxis, :] X_Ia = np.vstack( [X_ECIa.flatten().reshape(-1, 3), X_FDIa.flatten().reshape(-1, 3)]) return X_Ia I_cells_Fi = tr.Property(depends_on='+GEO') '''Array with nodal coordinates I - node, a - dimension ''' @tr.cached_property def _get_I_cells_Fi(self): I_Fi_cell = self.wb_cell.I_Fi n_I_cell = self.wb_cell.n_I n_cells = self.n_cells i_range = np.arange(n_cells) * n_I_cell I_Fi = (I_Fi_cell[np.newaxis, :, :] + i_range[:, np.newaxis, np.newaxis]).reshape(-1, 3) return I_Fi X_Ia = tr.Property(depends_on='+GEO') '''Array with nodal coordinates I - node, a - dimension ''' @tr.cached_property def _get_X_Ia(self): idx_unique, idx_remap = self.unique_node_map return self.X_cells_Ia[idx_unique] I_Fi = tr.Property(depends_on='+GEO') '''Facet - node mapping ''' @tr.cached_property def _get_I_Fi(self): _, idx_remap = self.unique_node_map return idx_remap[self.I_cells_Fi] node_match_threshold = tr.Property(depends_on='+GEO') def _get_node_match_threshold(self): min_length = np.min([self.a, self.b, self.c]) return min_length * 1e-4 unique_node_map = tr.Property(depends_on='+GEO') '''Property containing the mapping between the crease pattern nodes with duplicate nodes and pattern with compressed nodes array. The criterion for removing a node is geometric, the threshold is specified in node_match_threshold. ''' def _get_unique_node_map(self): # reshape the coordinates in array of segments to the shape (n_N, n_D x_0 = self.X_cells_Ia # construct distance vectors between every pair of nodes x_x_0 = x_0[:, np.newaxis, :] - x_0[np.newaxis, :, :] # calculate the distance between every pair of nodes dist_0 = np.sqrt(np.einsum('...i,...i', x_x_0, x_x_0)) # identify those at the same location zero_dist = dist_0 < self.node_match_threshold # get their indices i_idx, j_idx = np.where(zero_dist) # take only the upper triangle indices upper_triangle = i_idx < j_idx idx_multi, idx_delete = i_idx[upper_triangle], j_idx[upper_triangle] # construct a boolean array with True at valid and False at deleted # indices idx_unique = np.ones((len(x_0), ), dtype='bool') idx_unique[idx_delete] = False # Boolean array of nodes to keep - includes both those that # are unique and redirection nodes to be substituted for duplicates idx_keep = np.ones((len(x_0), ), dtype=np.bool_) idx_keep[idx_delete] = False # prepare the enumeration map map ij_map = np.ones_like(dist_0, dtype=np.int_) + len(x_0) i_ = np.arange(len(x_0)) # indexes of nodes that are being kept idx_row = i_[idx_keep] # enumerate the kept nodes by putting their number onto the diagonal ij_map[idx_keep, idx_keep] = np.arange(len(idx_row)) # broadcast the substitution nodes into the interaction positions ij_map[i_idx, j_idx] = ij_map[i_idx, i_idx] # get the substitution node by picking up the minimum index within ac column idx_remap = np.min(ij_map, axis=0) return idx_unique, idx_remap I_CDij = tr.Property(depends_on='+GEO') @tr.cached_property def _get_I_CDij(self): n_cells, n_ic, n_id, _, x_cell_idx, _, y_cell_idx = self.cell_map x_idx, y_idx = x_cell_idx / 2, y_cell_idx / 2 n_x_, n_y_ = len(x_idx), len(y_idx) I_cell_offset = (n_ic + np.arange(n_x_ * n_y_).reshape( n_x_, n_y_)) * self.wb_cell.n_I I_CDij_map = (I_cell_offset.T[:, :, np.newaxis, np.newaxis] + self.wb_cell.I_boundary[np.newaxis, np.newaxis, :, :]) return I_CDij_map def setup_plot(self, pb): self.pb = pb X_Ia = self.X_Ia.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) I_M = self.I_CDij[(0, -1), :, (0, -1), :] _, idx_remap = self.unique_node_map J_M = idx_remap[I_M] X_Ma = X_Ia[J_M.flatten()] k3d_mesh = k3d.mesh(X_Ia, I_Fi, color=0x999999, side='double') pb.objects['k3d_mesh'] = k3d_mesh pb.plot_fig += k3d_mesh if self.show_nodes: self._add_nodes_to_fig(pb, X_Ma) if self.wb_cell.show_node_labels: self._add_nodes_labels_to_fig(pb, X_Ia) if self.show_wireframe: self._add_wireframe_to_fig(pb, X_Ia, I_Fi) def update_plot(self, pb): X_Ia = self.X_Ia.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) I_M = self.I_CDij[(0, -1), :, (0, -1), :] _, idx_remap = self.unique_node_map J_M = idx_remap[I_M] X_Ma = X_Ia[J_M.flatten()] mesh = pb.objects['k3d_mesh'] mesh.vertices = X_Ia mesh.indices = I_Fi if self.show_nodes: if self.NODES in pb.objects: pb.objects[self.NODES].positions = X_Ma else: self._add_nodes_to_fig(pb, X_Ma) else: if self.NODES in pb.objects: pb.clear_object(self.NODES) if self.show_wireframe: if self.WIREFRAME in pb.objects: wireframe = pb.objects[self.WIREFRAME] wireframe.vertices = X_Ia wireframe.indices = I_Fi else: self._add_wireframe_to_fig(pb, X_Ia, I_Fi) else: if self.WIREFRAME in pb.objects: pb.clear_object(self.WIREFRAME) if self.show_node_labels: if self.NODES_LABELS in pb.objects: pb.clear_object(self.NODES_LABELS) self._add_nodes_labels_to_fig(pb, X_Ia) else: if self.NODES_LABELS in pb.objects: pb.clear_object(self.NODES_LABELS) def _add_nodes_labels_to_fig(self, pb, X_Ia): text_list = [] for I, X_a in enumerate(X_Ia): k3d_text = k3d.text('%g' % I, tuple(X_a), label_box=False, size=0.8, color=0x00FF00) pb.plot_fig += k3d_text text_list.append(k3d_text) pb.objects[self.NODES_LABELS] = text_list def _add_wireframe_to_fig(self, pb, X_Ia, I_Fi): k3d_mesh_wireframe = k3d.mesh(X_Ia, I_Fi, color=0x000000, wireframe=True) pb.plot_fig += k3d_mesh_wireframe pb.objects[self.WIREFRAME] = k3d_mesh_wireframe def _add_nodes_to_fig(self, pb, X_Ma): k3d_points = k3d.points(X_Ma, point_size=300) pb.objects[self.NODES] = k3d_points pb.plot_fig += k3d_points def _show_or_hide_fig_object(self, pb, show_obj, obj_name, obj_add_fun, obj_update_fun): if show_obj: if obj_name in pb.objects: obj_update_fun() else: obj_add_fun() else: if obj_name in pb.objects: pb.clear_object(obj_name) def export_fold_file(self, path=None): # See https://github.com/edemaine/fold/blob/master/doc/spec.md for fold file specification # Viewer: https://edemaine.github.io/fold/examples/foldviewer.html output_data = { "file_spec": 1, "file_creator": "BMCS software suite", "file_author": "RWTH Aachen - Institute of Structural Concrete", "file_title": "Preliminary Base", "file_classes": ["singleModel"], "frame_title": "Preliminary Base Crease Pattern", "frame_classes": ["creasePattern"], "vertices_coords": self.X_Ia.tolist(), "faces_vertices": self.I_Fi.tolist(), # To be completed } if path is None: path = time.strftime("%Y%m%d-%H%M%S") + '-shell.fold' with open(path, 'w') as outfile: json.dump(output_data, outfile, sort_keys=True, indent=4)
class Slide34(MATSEval, bu.InjectSymbExpr): name = 'Slide 3.4' symb_class = Slide34Expr E_T = bu.Float(28000, MAT=True) gamma_T = bu.Float(10, MAT=True) K_T = bu.Float(8, MAT=True) S_T = bu.Float(1, MAT=True) c_T = bu.Float(1, MAT=True) bartau = bu.Float(28000, MAT=True) E_N = bu.Float(28000, MAT=True) S_N = bu.Float(1, MAT=True) c_N = bu.Float(1, MAT=True) m = bu.Float(0.1, MAT=True) f_t = bu.Float(3, MAT=True) f_c = bu.Float(30, MAT=True) f_c0 = bu.Float(20, MAT=True) eta = bu.Float(0.5, MAT=True) r = bu.Float(1, MAT=True) c_NT = tr.Property(bu.Float, depends_on='state_changed') @tr.cached_property def _get_c_NT(self): return np.sqrt(self.c_N * self.c_T) S_NT = tr.Property(bu.Float, depends_on='state_changed') @tr.cached_property def _get_S_NT(self): return np.sqrt(self.S_N * self.S_T) debug = bu.Bool(False) def C_codegen(self): import os import os.path as osp C_code = [] for symb_name, symb_params in self.symb.symb_expressions: c_func_name = 'get_' + symb_name c_func = ccode(c_func_name, getattr(self.symb, symb_name), 'SLIDE33') C_code.append(c_func) code_dirname = 'sympy_codegen' code_fname = 'SLIDE33_3D' home_dir = osp.expanduser('~') code_dir = osp.join(home_dir, code_dirname) if not osp.exists(code_dir): os.makedirs(code_dir) code_file = osp.join(code_dir, code_fname) print('generated code_file', code_file) h_file = code_file + '.h' c_file = code_file + '.c' h_f = open(h_file, 'w') c_f = open(c_file, 'w') if True: for function_C in C_code: h_f.write(function_C[1][1]) c_f.write(function_C[0][1]) h_f.close() c_f.close() ipw_view = bu.View( bu.Item('E_T', latex='E_T'), bu.Item('S_T'), bu.Item('c_T'), bu.Item('gamma_T'), bu.Item('K_T'), bu.Item('bartau', latex=r'\bar{\tau}'), bu.Item('E_N'), bu.Item('S_N'), bu.Item('c_N'), bu.Item('m'), bu.Item('f_t'), bu.Item('f_c', latex=r'f_\mathrm{c}'), bu.Item('f_c0', latex=r'f_\mathrm{c0}'), bu.Item('eta'), bu.Item('r'), bu.Item('c_NT', readonly=True), bu.Item('S_NT', readonly=True), ) damage_interaction = tr.Enum('final', 'geometric', 'arithmetic') get_phi_ = tr.Property def _get_get_phi_(self): return self.symb.get_phi_final_ get_Phi_ = tr.Property def _get_get_Phi_(self): return self.symb.get_Phi_final_ def get_f_df(self, u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k): if self.debug: print('w_n1', u_N_n1.dtype, u_N_n1.shape) print('s_x_n1', u_Tx_n1.dtype, u_Tx_n1.shape) print('s_y_n1', u_Ty_n1.dtype, u_Ty_n1.shape) print('Eps_k', Eps_k.dtype, Eps_k.shape) print('Sig_k', Sig_k.dtype, Sig_k.shape) ONES = np.ones_like(u_Tx_n1, dtype=np.float_) if self.debug: print('ONES', ONES.dtype) ZEROS = np.zeros_like(u_Tx_n1, dtype=np.float_) if self.debug: print('ZEROS', ZEROS.dtype) Sig_k = self.symb.get_Sig_(u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k)[0] if self.debug: print('Sig_k', Sig_k.dtype, Sig_k.shape) dSig_dEps_k = self.symb.get_dSig_dEps_(u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k, ZEROS, ONES) if self.debug: print('dSig_dEps_k', dSig_dEps_k.dtype) H_sig_pi = self.symb.get_H_sig_pi_(Sig_k) if self.debug: print('H_sig_pi', H_sig_pi.dtype) f_k = np.array([self.symb.get_f_(Eps_k, Sig_k, H_sig_pi)]) if self.debug: print('f_k', f_k.dtype) df_dSig_k = self.symb.get_df_dSig_(Eps_k, Sig_k, H_sig_pi, ZEROS, ONES) if self.debug: print('df_dSig_k', df_dSig_k.dtype) ddf_dEps_k = self.symb.get_ddf_dEps_(Eps_k, Sig_k, H_sig_pi, ZEROS, ONES) if self.debug: print('ddf_dEps_k', ddf_dEps_k.dtype) df_dEps_k = np.einsum('ik...,ji...->jk...', df_dSig_k, dSig_dEps_k) + ddf_dEps_k Phi_k = self.get_Phi_(Eps_k, Sig_k, H_sig_pi, ZEROS, ONES) dEps_dlambda_k = Phi_k df_dlambda = np.einsum('ki...,kj...->ij...', df_dEps_k, dEps_dlambda_k) df_k = df_dlambda return f_k, df_k, Sig_k def get_Eps_k1(self, u_N_n1, u_Tx_n1, u_Ty_n1, Eps_n, lam_k, Sig_k, Eps_k): '''Evolution equations: The update of state variables for an updated $\lambda_k$ is performed using this procedure. ''' ONES = np.ones_like(u_Tx_n1) ZEROS = np.zeros_like(u_Tx_n1) Sig_k = self.symb.get_Sig_(u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k)[0] H_sig_pi = self.symb.get_H_sig_pi_(Sig_k) Phi_k = self.get_Phi_(Eps_k, Sig_k, H_sig_pi, ZEROS, ONES) Eps_k1 = Eps_n + lam_k * Phi_k[:, 0] return Eps_k1 rtol = bu.Float(1e-3, ALG=True) '''Relative tolerance of the return mapping algorithm related to the tensile strength ''' Eps_names = tr.Property @tr.cached_property def _get_Eps_names(self): return [eps.codename for eps in self.symb.Eps] Sig_names = tr.Property @tr.cached_property def _get_Sig_names(self): return [sig.codename for sig in self.symb.Sig] state_var_shapes = tr.Property @tr.cached_property def _get_state_var_shapes(self): '''State variables shapes: variables are using the codename string in the Cymbol definition Since the same string is used in the lambdify method via print_Symbol method defined in Cymbol as well''' return {eps_name: () for eps_name in self.Eps_names + self.Sig_names} k_max = bu.Int(100, ALG=True) '''Maximum number of iterations''' def get_corr_pred(self, eps_Ema, t_n1, **state): '''Return mapping iteration: This function represents a user subroutine in a finite element code or in a lattice model. The input is $s_{n+1}$ and the state variables representing the state in the previous solved step $\boldsymbol{\mathcal{E}}_n$. The procedure returns the stresses and state variables of $\boldsymbol{\mathcal{S}}_{n+1}$ and $\boldsymbol{\mathcal{E}}_{n+1}$ ''' eps_aEm = np.einsum('...a->a...', eps_Ema) dim = len(eps_aEm) if dim == 2: # hack - only one slip considered - 2D version select_idx = (1, 0) u_Tx_n1, u_N_n1 = eps_aEm u_Ty_n1 = np.zeros_like(u_Tx_n1) else: raise ValueError('3D not implemented here') ONES = np.ones_like(u_Tx_n1, dtype=np.float_) if self.debug: print('ONES', ONES.dtype) ZEROS = np.zeros_like(u_Tx_n1, dtype=np.float_) if self.debug: print('ZEROS', ZEROS.dtype) # Transform state to Eps_k and Sig_k Eps_n = np.array([state[eps_name] for eps_name in self.Eps_names], dtype=np.float_) Eps_k = np.copy(Eps_n) #Sig_k = np.array([state[sig_name] for sig_name in self.Sig_names], dtype=np.float_) Sig_k = np.zeros_like(Eps_k) f_k, df_k, Sig_k = self.get_f_df(u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k) f_k, df_k = f_k[0, ...], df_k[0, 0, ...] f_k_trial = f_k # indexes of inelastic entries L = np.where(f_k_trial > 0) # f norm in inelastic entries - to allow also positive values less the rtol f_k_norm_I = np.fabs(f_k_trial[L]) lam_k = np.zeros_like(f_k_trial) k = 0 while k < self.k_max: if self.debug: print('k', k) # which entries are above the tolerance I = np.where(f_k_norm_I > (self.f_t * self.rtol)) if self.debug: print('f_k_norm_I', f_k_norm_I, self.f_t * self.rtol, len(I[0])) if (len(I[0]) == 0): # empty inelastic entries - accept state #return Eps_k, Sig_k, k + 1 dSig_dEps_k = self.symb.get_dSig_dEps_(u_N_n1, u_Tx_n1, u_Ty_n1, Sig_k, Eps_k, ZEROS, ONES) ix1, ix2 = np.ix_(select_idx, select_idx) D_ = np.einsum('ab...->...ab', dSig_dEps_k[ix1, ix2, ...]) sig_ = np.einsum('a...->...a', Sig_k[select_idx, ...]) # quick fix _, _, _, _, _, _, omega_T, omega_N = Eps_k D_ = np.zeros(sig_.shape + (sig_.shape[-1], )) D_[..., 0, 0] = self.E_N * (1 - omega_N) D_[..., 1, 1] = self.E_T * (1 - omega_T) if dim == 3: D_[..., 2, 2] = self.E_T #* (1 - omega_T) for eps_name, Eps_ in zip(self.Eps_names, Eps_k): state[eps_name][...] = Eps_[...] for sig_name, Sig_ in zip(self.Sig_names, Sig_k): state[sig_name][...] = Sig_[...] return sig_, D_ if self.debug: print('I', I) print('L', L) LL = tuple(Li[I] for Li in L) L = LL if self.debug: print('new L', L) print('f_k', f_k[L].shape, f_k[L].dtype) print('df_k', df_k[L].shape, df_k[L].dtype) # return mapping on inelastic entries dlam_L = -f_k[L] / df_k[L] # np.linalg.solve(df_k[I], -f_k[I]) if self.debug: print('dlam_I', dlam_L, dlam_L.dtype) lam_k[L] += dlam_L if self.debug: print('lam_k_L', lam_k, lam_k.dtype, lam_k[L].shape) L_slice = (slice(None), ) + L Eps_k_L = self.get_Eps_k1(u_N_n1[L], u_Tx_n1[L], u_Ty_n1[L], Eps_n[L_slice], lam_k[L], Sig_k[L_slice], Eps_k[L_slice]) Eps_k[L_slice] = Eps_k_L f_k_L, df_k_L, Sig_k_L = self.get_f_df(u_N_n1[L], u_Tx_n1[L], u_Ty_n1[L], Sig_k[L_slice], Eps_k_L) f_k[L], df_k[L] = f_k_L[0, ...], df_k_L[0, 0, ...] Sig_k[L_slice] = Sig_k_L if self.debug: print('Sig_k', Sig_k) print('f_k', f_k) f_k_norm_I = np.fabs(f_k[L]) k += 1 else: raise ConvergenceError('no convergence for entries', [L, u_N_n1[I], u_Tx_n1[I], u_Ty_n1[I]]) # add the algorithmic stiffness # recalculate df_k and -f_k for a unit increment of epsilon and solve for lambda # def plot_f_state(self, ax, Eps, Sig): lower = -self.f_c * 1.05 upper = self.f_t + 0.05 * self.f_c lower_tau = -self.bartau * 2 upper_tau = self.bartau * 2 lower_tau = 0 upper_tau = 10 sig, tau_x, tau_y = Sig[:3] tau = np.sqrt(tau_x**2 + tau_y**2) sig_ts, tau_x_ts = np.mgrid[lower:upper:201j, lower_tau:upper_tau:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + tau_x_ts.shape) Eps_ts = np.zeros_like(Sig_ts) Sig_ts[0, ...] = sig_ts Sig_ts[1, ...] = tau_x_ts Sig_ts[3:, ...] = Sig[3:, np.newaxis, np.newaxis] Eps_ts[...] = Eps[:, np.newaxis, np.newaxis] H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) f_ts = np.array([self.symb.get_f_(Eps_ts, Sig_ts, H_sig_pi)]) #phi_ts = np.array([self.symb.get_phi_(Eps_ts, Sig_ts)]) ax.set_title('threshold function') omega_N = Eps_ts[-1, :] omega_T = Eps_ts[-2, :] sig_ts_eff = sig_ts / (1 - H_sig_pi * omega_N) tau_x_ts_eff = tau_x_ts / (1 - omega_T) ax.contour(sig_ts_eff, tau_x_ts_eff, f_ts[0, ...], levels=0, colors=('green', )) ax.contour(sig_ts, tau_x_ts, f_ts[0, ...], levels=0, colors=('red', )) #ax.contour(sig_ts, tau_x_ts, phi_ts[0, ...]) ax.plot(sig, tau, marker='H', color='red') ax.plot([lower, upper], [0, 0], color='black', lw=0.4) ax.plot([0, 0], [lower_tau, upper_tau], color='black', lw=0.4) ax.set_ylim(ymin=0, ymax=10) def plot_f(self, ax): lower = -self.f_c * 1.05 upper = self.f_t + 0.05 * self.f_c lower_tau = -self.bartau * 2 upper_tau = self.bartau * 2 sig_ts, tau_x_ts = np.mgrid[lower:upper:201j, lower_tau:upper_tau:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + tau_x_ts.shape) Sig_ts[0, :] = sig_ts Sig_ts[1, :] = tau_x_ts Eps_ts = np.zeros_like(Sig_ts) H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) f_ts = np.array([self.symb.get_f_(Eps_ts, Sig_ts, H_sig_pi)]) phi_ts = np.array([self.get_phi_(Eps_ts, Sig_ts, H_sig_pi)]) ax.set_title('threshold function') ax.contour(sig_ts, tau_x_ts, f_ts[0, ...], levels=0) ax.contour(sig_ts, tau_x_ts, phi_ts[0, ...]) ax.plot([lower, upper], [0, 0], color='black', lw=0.4) ax.plot([0, 0], [lower_tau, upper_tau], color='black', lw=0.4) def plot_sig_w(self, ax): pass def plot_tau_s(self, ax): pass def subplots(self, fig): return fig.subplots(2, 2) def update_plot(self, axes): (ax_sig_w, ax_tau_s), (ax_f, _) = axes self.plot_sig_w(ax_sig_w) self.plot_tau_s(ax_tau_s) self.plot_f(ax_f)
class FETriangularMesh(bu.Model): name = 'FETriangularMesh' X_Id = tr.Array(np.float_, value=[[0, 0, 0], [2, 0, 0], [2, 2, 0], [1, 1, 0]]) I_Fi = tr.Array(np.int_, value=[ [0, 1, 3], [1, 2, 3], ]) fets = tr.Instance(FETSEval) def _fets_default(self): return FETS2D3U1M() show_node_labels = bu.Bool(False) n_nodal_dofs = tr.DelegatesTo('fets') dof_offset = tr.Int(0) n_active_elems = tr.Property def _get_n_active_elems(self): return len(self.I_Fi) ipw_view = bu.View(bu.Item('show_node_labels'), ) #========================================================================= # 3d Visualization #========================================================================= plot_backend = 'k3d' show_wireframe = bu.Bool(True) def setup_plot(self, pb): X_Id = self.X_Id.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) fe_mesh = k3d.mesh(X_Id, I_Fi, color=0x999999, opacity=1.0, side='double') pb.plot_fig += fe_mesh pb.objects['mesh'] = fe_mesh if self.show_wireframe: k3d_mesh_wireframe = k3d.mesh(X_Id, I_Fi, color=0x000000, wireframe=True) pb.plot_fig += k3d_mesh_wireframe pb.objects['mesh_wireframe'] = k3d_mesh_wireframe if self.show_node_labels: self._add_nodes_labels_to_fig(pb, X_Id) NODES_LABELS = 'nodes_labels' def update_plot(self, pb): X_Id = self.X_Id.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) mesh = pb.objects['mesh'] mesh.vertices = X_Id mesh.indices = I_Fi if self.show_wireframe: wireframe = pb.objects['mesh_wireframe'] wireframe.vertices = X_Id wireframe.indices = I_Fi if self.show_node_labels: if self.NODES_LABELS in pb.objects: pb.clear_object(self.NODES_LABELS) self._add_nodes_labels_to_fig(pb, X_Id) else: if self.NODES_LABELS in pb.objects: pb.clear_object(self.NODES_LABELS) def _add_nodes_labels_to_fig(self, pb, X_Id): text_list = [] for I, X_d in enumerate(X_Id): k3d_text = k3d.text('%g' % I, tuple(X_d), label_box=False, size=0.8, color=0x00FF00) pb.plot_fig += k3d_text text_list.append(k3d_text) pb.objects[self.NODES_LABELS] = text_list
class WBTessellationBase(bu.Model): name = 'WB Tessellation Base' plot_backend = 'k3d' # show_wireframe = bu.Bool(True, GEO=True) show_node_labels = bu.Bool(False, GEO=True) wb_cell = bu.EitherType(options=[('WBCell4Param', WBCell4Param), ('WBCell5Param', WBCell5Param), ('WBCell5ParamV2', WBCell5ParamV2), ('WBCell5ParamV3', WBCell5ParamV3)], GEO=True) X_Ia = tr.DelegatesTo('wb_cell_') I_Fi = tr.DelegatesTo('wb_cell_') tree = ['wb_cell'] event_geo = bu.Bool(True, GEO=True) # Note: Update traits to 6.3.2 in order for the following command to work!! @tr.observe('wb_cell_.+GEO', post_init=True) def update_after_wb_cell_GEO_changes(self, event): self.event_geo = not self.event_geo self.update_plot(self.pb) ipw_view = bu.View( bu.Item('wb_cell'), # bu.Item('show_wireframe'), bu.Item('show_node_labels'), ) def _get_br_X_Ia(self, X_Ia, rot=None): br_X_Ia = self._get_cell_matching_v1_to_v2(X_Ia, np.array([4, 6]), np.array([5, 1])) return self.rotate_cell(br_X_Ia, np.array([4, 6]), self.sol[0] if rot is None else rot) def _get_ur_X_Ia(self, X_Ia, rot=None): ur_X_Ia = self._get_cell_matching_v1_to_v2(X_Ia, np.array([6, 2]), np.array([3, 5])) return self.rotate_cell(ur_X_Ia, np.array([6, 2]), self.sol[1] if rot is None else rot) def _get_ul_X_Ia(self, X_Ia, rot=None): br_X_Ia = self._get_cell_matching_v1_to_v2(X_Ia, np.array([5, 1]), np.array([4, 6])) return self.rotate_cell(br_X_Ia, np.array([5, 1]), -self.sol[0] if rot is None else rot) def _get_bl_X_Ia(self, X_Ia, rot=None): br_X_Ia = self._get_cell_matching_v1_to_v2(X_Ia, np.array([3, 5]), np.array([6, 2])) return self.rotate_cell(br_X_Ia, np.array([3, 5]), -self.sol[1] if rot is None else rot) def _get_cell_matching_v1_to_v2(self, X_Ia, v1_ids, v2_ids): v1_2a = np.array([X_Ia[v1_ids[0]], X_Ia[v1_ids[1]], X_Ia[0]]).T v2_2a = np.array([ X_Ia[v2_ids[0]], X_Ia[v2_ids[1]], X_Ia[v2_ids[0]] + X_Ia[v2_ids[1]] - X_Ia[0] ]).T rot, trans = get_best_rot_and_trans_3d(v1_2a, v2_2a) translated_X_Ia = trans.flatten() + np.einsum('ba, Ia -> Ib', rot, X_Ia) return self.rotate_cell(translated_X_Ia, v1_ids, angle=np.pi) def rotate_cell(self, cell_X_Ia, v1_ids, angle=np.pi): # Rotating around vector ####### # 1. Bringing back to origin (because rotating is around a vector originating from origin) cell_X_Ia_copy = np.copy(cell_X_Ia) cell_X_Ia = cell_X_Ia_copy - cell_X_Ia_copy[v1_ids[1]] # 2. Rotating rot_around_v1 = get_rot_matrix_around_vector( cell_X_Ia[v1_ids[0]] - cell_X_Ia[v1_ids[1]], angle) cell_X_Ia = np.einsum('ba, Ia -> Ib', rot_around_v1, cell_X_Ia) # 3. Bringing back in position return cell_X_Ia + cell_X_Ia_copy[v1_ids[1]] sol = tr.Property(depends_on='+GEO') @tr.cached_property def _get_sol(self): # No solution is provided in base class, a default value is provided for visualization return np.array([np.pi, np.pi]) # Plotting ########################################################################## def setup_plot(self, pb): self.pb = pb pb.clear_fig() I_Fi = self.I_Fi X_Ia = self.X_Ia br_X_Ia = self._get_br_X_Ia(X_Ia) ur_X_Ia = self._get_ur_X_Ia(X_Ia) self.add_cell_to_pb(pb, X_Ia, I_Fi, 'X_Ia') self.add_cell_to_pb(pb, br_X_Ia, I_Fi, 'br_X_Ia') self.add_cell_to_pb(pb, ur_X_Ia, I_Fi, 'ur_X_Ia') k3d_mesh = {} k3d_wireframe = {} k3d_labels = {} def update_plot(self, pb): if self.k3d_mesh: X_Ia = self.X_Ia.astype(np.float32) br_X_Ia = self._get_br_X_Ia(self.X_Ia).astype(np.float32) ur_X_Ia = self._get_ur_X_Ia(self.X_Ia).astype(np.float32) self.k3d_mesh['X_Ia'].vertices = X_Ia self.k3d_mesh['br_X_Ia'].vertices = br_X_Ia self.k3d_mesh['ur_X_Ia'].vertices = ur_X_Ia self.k3d_wireframe['X_Ia'].vertices = X_Ia self.k3d_wireframe['br_X_Ia'].vertices = br_X_Ia self.k3d_wireframe['ur_X_Ia'].vertices = ur_X_Ia else: self.setup_plot(pb) def add_cell_to_pb(self, pb, X_Ia, I_Fi, obj_name): plot = pb.plot_fig wb_mesh = k3d.mesh( X_Ia.astype(np.float32), I_Fi.astype(np.uint32), # opacity=0.9, color=0x999999, side='double') rand_color = random.randint(0, 0xFFFFFF) plot += wb_mesh self.k3d_mesh[obj_name] = wb_mesh # wb_points = k3d.points(X_Ia.astype(np.float32), # color=0x999999, # point_size=100) # plot +=wb_points if self.show_node_labels: texts = [] for I, X_a in enumerate(X_Ia): k3d_text = k3d.text('%g' % I, tuple(X_a), label_box=False, size=0.8, color=rand_color) plot += k3d_text texts.append(k3d_text) self.k3d_labels[obj_name] = texts wb_mesh_wireframe = k3d.mesh(X_Ia.astype(np.float32), I_Fi.astype(np.uint32), color=0x000000, wireframe=True) plot += wb_mesh_wireframe self.k3d_wireframe[obj_name] = wb_mesh_wireframe
class EnergyDissipation(bu.InteractiveModel): name='Energy' colors = dict( # color associations stored_energy = 'darkgreen', # recoverable free_energy_kin = 'darkcyan', # freedom - sky free_energy_iso = 'darkslateblue', # freedom - sky plastic_diss_s = 'darkorange', # fire - heat plastic_diss_w = 'red', # fire - heat damage_diss_s = 'darkgray', # ruined damage_diss_w = 'black' # ruined ) slider_exp = tr.WeakRef(bu.InteractiveModel) t_arr = tr.DelegatesTo('slider_exp') Sig_arr = tr.DelegatesTo('slider_exp') Eps_arr = tr.DelegatesTo('slider_exp') s_x_t = tr.DelegatesTo('slider_exp') s_y_t = tr.DelegatesTo('slider_exp') w_t = tr.DelegatesTo('slider_exp') iter_t = tr.DelegatesTo('slider_exp') show_iter = bu.Bool(False) E_plastic_work = bu.Bool(False) E_iso_free_energy = bu.Bool(True) E_kin_free_energy = bu.Bool(True) E_plastic_diss = bu.Bool(True) E_damage_diss = bu.Bool(True) ipw_view = bu.View( bu.Item('show_iter'), bu.Item('E_damage_diss'), bu.Item('E_plastic_work'), bu.Item('E_iso_free_energy'), bu.Item('E_kin_free_energy'), bu.Item('E_plastic_diss'), ) WUG_t = tr.Property def _get_W_t(self): W_arr = ( cumtrapz(self.Sig_arr[:, 0], self.s_x_t, initial=0) + cumtrapz(self.Sig_arr[:, 1], self.s_y_t, initial=0) + cumtrapz(self.Sig_arr[:, 2], self.w_t, initial=0) ) s_x_el_t = (self.s_x_t - self.Eps_arr[:, 0]) s_y_el_t = (self.s_y_t - self.Eps_arr[:, 1]) w_el_t = (self.w_t - self.Eps_arr[:, 2]) U_arr = ( self.Sig_arr[:, 0] * s_x_el_t / 2.0 + self.Sig_arr[:, 1] * s_y_el_t / 2.0 + self.Sig_arr[:, 2] * w_el_t / 2.0 ) G_arr = W_arr - U_arr return W_arr, U_arr, G_arr Eps = tr.Property """Energy dissipated in associatiation with individual internal variables """ def _get_Eps(self): Eps_names = self.slider_exp.slide_model.Eps_names E_i = cumtrapz(self.Sig_arr, self.Eps_arr, initial=0, axis=0) return SimpleNamespace(**{Eps_name: E for Eps_name, E in zip(Eps_names, E_i.T)}) mechanisms = tr.Property """Energy in association with mechanisms (damage and plastic dissipation) or free energy """ def _get_mechanisms(self): E_i = cumtrapz(self.Sig_arr, self.Eps_arr, initial=0, axis=0) E_T_x_pi_, E_T_y_pi_, E_N_pi_, E_z_, E_alpha_x_, E_alpha_y_, E_omega_T_, E_omega_N_ = E_i.T E_plastic_work_T = E_T_x_pi_ + E_T_y_pi_ E_plastic_work_N = E_N_pi_ E_plastic_work = E_plastic_work_T + E_plastic_work_N E_iso_free_energy = E_z_ E_kin_free_energy = E_alpha_x_ + E_alpha_y_ E_plastic_diss_T = E_plastic_work_T - E_iso_free_energy - E_kin_free_energy E_plastic_diss_N = E_plastic_work_N E_plastic_diss = E_plastic_diss_T + E_plastic_diss_N E_damage_diss = E_omega_T_ + E_omega_N_ return SimpleNamespace(**{'plastic_work_N': E_plastic_work_N, 'plastic_work_T': E_plastic_work_T, 'plastic_work': E_plastic_work, 'iso_free_energy': E_iso_free_energy, 'kin_free_energy': E_kin_free_energy, 'plastic_diss_N': E_plastic_diss_N, 'plastic_diss_T': E_plastic_diss_T, 'plastic_diss': E_plastic_diss, 'damage_diss_N': E_omega_N_, 'damage_diss_T': E_omega_T_, 'damage_diss': E_damage_diss}) def plot_energy(self, ax, ax_i): W_arr = ( cumtrapz(self.Sig_arr[:, 0], self.s_x_t, initial=0) + cumtrapz(self.Sig_arr[:, 1], self.s_y_t, initial=0) + cumtrapz(self.Sig_arr[:, 2], self.w_t, initial=0) ) s_x_el_t = (self.s_x_t - self.Eps_arr[:, 0]) s_y_el_t = (self.s_y_t - self.Eps_arr[:, 1]) w_el_t = (self.w_t - self.Eps_arr[:, 2]) U_arr = ( self.Sig_arr[:, 0] * s_x_el_t / 2.0 + self.Sig_arr[:, 1] * s_y_el_t / 2.0 + self.Sig_arr[:, 2] * w_el_t / 2.0 ) G_arr = W_arr - U_arr ax.plot(self.t_arr, W_arr, lw=0.5, color='black', label=r'$W$ - Input work') ax.plot(self.t_arr, G_arr, '--', color='black', lw = 0.5, label=r'$W^\mathrm{inel}$ - Inelastic work') ax.fill_between(self.t_arr, W_arr, G_arr, color=self.colors['stored_energy'], alpha=0.2) ax.set_xlabel('$t$ [-]'); ax.set_ylabel(r'$E$ [Nmm]') ax.legend() E_i = cumtrapz(self.Sig_arr, self.Eps_arr, initial=0, axis=0) E_T_x_pi_, E_T_y_pi_, E_N_pi_, E_z_, E_alpha_x_, E_alpha_y_, E_omega_T_, E_omega_N_ = E_i.T E_plastic_work_T = E_T_x_pi_ + E_T_y_pi_ E_plastic_work_N = E_N_pi_ E_plastic_work = E_plastic_work_T + E_plastic_work_N E_iso_free_energy = E_z_ E_kin_free_energy = E_alpha_x_ + E_alpha_y_ E_plastic_diss_T = E_plastic_work_T - E_iso_free_energy - E_kin_free_energy E_plastic_diss_N = E_plastic_work_N E_plastic_diss = E_plastic_diss_T + E_plastic_diss_N E_damage_diss = E_omega_T_ + E_omega_N_ E_level = 0 if self.E_damage_diss: ax.plot(self.t_arr, E_damage_diss + E_level, color='black', lw=1) ax_i.plot(self.t_arr, E_damage_diss, color='gray', lw=2, label=r'damage diss.: $Y\dot{\omega}$') ax.fill_between(self.t_arr, E_omega_N_ + E_level, E_level, color='black', hatch='|'); E_d_level = E_level + E_omega_N_ ax.fill_between(self.t_arr, E_omega_T_ + E_d_level, E_d_level, color='gray', alpha=0.3); E_level = E_damage_diss if self.E_plastic_work: ax.plot(self.t_arr, E_plastic_work + E_level, lw=0.5, color='black') # ax.fill_between(self.t_arr, E_plastic_work + E_level, E_level, color='red', alpha=0.3) label = r'plastic work: $\sigma \dot{\varepsilon}^\pi$' ax_i.plot(self.t_arr, E_plastic_work, color='red', lw=2,label=label) ax.fill_between(self.t_arr, E_plastic_work_N + E_level, E_level, color='orange', alpha=0.3); E_p_level = E_level + E_plastic_work_N ax.fill_between(self.t_arr, E_plastic_work_T + E_p_level, E_p_level, color='red', alpha=0.3); if self.E_plastic_diss: ax.plot(self.t_arr, E_plastic_diss + E_level, lw=.4, color='black') label = r'apparent pl. diss.: $\sigma \dot{\varepsilon}^\pi - X\dot{\alpha} - Z\dot{z}$' ax_i.plot(self.t_arr, E_plastic_diss, color='red', lw=2, label=label) ax.fill_between(self.t_arr, E_plastic_diss_N + E_level, E_level, color='red', hatch='-'); E_d_level = E_level + E_plastic_diss_N ax.fill_between(self.t_arr, E_plastic_diss_T + E_d_level, E_d_level, color='red', alpha=0.3); E_level += E_plastic_diss if self.E_iso_free_energy: ax.plot(self.t_arr, E_iso_free_energy + E_level, '-.', lw=0.5, color='black') ax.fill_between(self.t_arr, E_iso_free_energy + E_level, E_level, color='royalblue', hatch='|') ax_i.plot(self.t_arr, -E_iso_free_energy, '-.', color='royalblue', lw=2, label=r'iso. diss.: $Z\dot{z}$') E_level += E_iso_free_energy if self.E_kin_free_energy: ax.plot(self.t_arr, E_kin_free_energy + E_level, '-.', color='black', lw=0.5) ax.fill_between(self.t_arr, E_kin_free_energy + E_level, E_level, color='royalblue', alpha=0.2); ax_i.plot(self.t_arr, -E_kin_free_energy, '-.', color='blue', lw=2, label=r'free energy: $X\dot{\alpha}$') ax_i.legend() ax_i.set_xlabel('$t$ [-]'); ax_i.set_ylabel(r'$E$ [Nmm]') @staticmethod def subplots(fig): ax_work, ax_energies = fig.subplots(1, 2) ax_iter = ax_work.twinx() return ax_work, ax_energies, ax_iter def update_plot(self, axes): ax_work, ax_energies, ax_iter = axes self.plot_energy(ax_work, ax_energies) if self.show_iter: ax_iter.plot(self.t_arr, self.iter_t) ax_iter.set_ylabel(r'$n_\mathrm{iter}$') def xsubplots(self, fig): ((ax1, ax2), (ax3, ax4)) = fig.subplots(2, 2, figsize=(10, 5), tight_layout=True) ax11 = ax1.twinx() ax22 = ax2.twinx() ax33 = ax3.twinx() ax44 = ax4.twinx() return ax1, ax11, ax2, ax22, ax3, ax33, ax4, ax44 def xupdate_plot(self, axes): ax1, ax11, ax2, ax22, ax3, ax33, ax4, ax44 = axes self.get_response([6, 0, 0]) # plot_Sig_Eps(s_x_t, Sig_arr, Eps_arr, iter_t, *axes) s_x_pi_, s_y_pi_, w_pi_, z_, alpha_x_, alpha_y_, omega_s_, omega_w_ = self.Eps_arr.T tau_x_pi_, tau_y_pi_, sig_pi_, Z_, X_x_, X_y_, Y_s_, Y_w_ = self.Sig_arr.T ax1.plot(self.w_t, sig_pi_, color='green') ax11.plot(self.s_x_t, tau_x_pi_, color='red') ax2.plot(self.w_t, omega_w_, color='green') ax22.plot(self.w_t, omega_s_, color='red')
class WBShellAnalysis(TStepBC, bu.InteractiveModel): name = 'WBShellAnalysis' plot_backend = 'k3d' id = bu.Str """ if you saved boundary conditions for your current analysis, this id will make sure these bcs are loaded automatically next time you create an instance with the same id """ h = bu.Float(10, GEO=True) show_wireframe = bu.Bool(True, GEO=True) ipw_view = bu.View( bu.Item('h', editor=bu.FloatRangeEditor(low=1, high=100, n_steps=100), continuous_update=False), bu.Item('show_wireframe'), time_editor=bu.ProgressEditor(run_method='run', reset_method='reset', interrupt_var='interrupt', time_var='t', time_max='t_max'), ) n_phi_plus = tr.Property() def _get_n_phi_plus(self): return self.xdomain.mesh.n_phi_plus tree = ['geo', 'bcs', 'tmodel', 'xdomain'] geo = bu.Instance(WBShellGeometry4P, ()) tmodel = bu.Instance(MATS2DElastic, ()) # tmodel = bu.Instance(MATSShellElastic, ()) bcs = bu.Instance(BoundaryConditions) def _bcs_default(self): return BoundaryConditions(geo=self.geo, n_nodal_dofs=self.xdomain.fets.n_nodal_dofs, id=self.id) xdomain = tr.Property(tr.Instance(TriXDomainFE), depends_on="state_changed") '''Discretization object.''' @tr.cached_property def _get_xdomain(self): # prepare the mesh generator # mesh = WBShellFETriangularMesh(geo=self.geo, direct_mesh=False, subdivision=2) mesh = WBShellFETriangularMesh(geo=self.geo, direct_mesh=True) # construct the domain with the kinematic strain mapper and stress integrator return TriXDomainFE( mesh=mesh, integ_factor=self.h, ) # mesh = WBShellFETriangularMesh(geo=self.geo, direct_mesh=True) # mesh.fets = FETS2DMITC(a= self.h) # return TriXDomainMITC( # mesh=mesh # ) domains = tr.Property(depends_on="state_changed") @tr.cached_property def _get_domains(self): return [(self.xdomain, self.tmodel)] def reset(self): self.sim.reset() t = tr.Property() def _get_t(self): return self.sim.t def _set_t(self, value): self.sim.t = value t_max = tr.Property() def _get_t_max(self): return self.sim.t_max def _set_t_max(self, value): self.sim.t_max = value interrupt = tr.Property() def _get_interrupt(self): return self.sim.interrupt def _set_interrupt(self, value): self.sim.interrupt = value bc = tr.Property(depends_on="state_changed") # @tr.cached_property def _get_bc(self): bc_fixed, _, _ = self.bcs.bc_fixed bc_loaded, _, _ = self.bcs.bc_loaded return bc_fixed + bc_loaded def run(self): s = self.sim s.tloop.k_max = 10 s.tline.step = 1 s.tloop.verbose = False s.run() def get_max_vals(self): self.run() U_1 = self.hist.U_t[-1] U_max = np.max(np.fabs(U_1)) return U_max def export_abaqus(self): al = AbaqusLink(shell_analysis=self) al.model_name = 'test_name' al.build_inp() def setup_plot(self, pb): print('analysis: setup_plot') X_Id = self.xdomain.mesh.X_Id if len(self.hist.U_t) == 0: U_1 = np.zeros_like(X_Id) print('analysis: U_I', ) else: U_1 = self.hist.U_t[-1] U_1 = U_1.reshape(-1, self.xdomain.fets.n_nodal_dofs)[:, :3] X1_Id = X_Id + U_1 X1_Id = X1_Id.astype(np.float32) I_Ei = self.xdomain.I_Ei.astype(np.uint32) # Original state mesh wb_mesh_0 = k3d.mesh(self.xdomain.X_Id.astype(np.float32), I_Ei, color=0x999999, opacity=0.5, side='double') pb.plot_fig += wb_mesh_0 pb.objects['wb_mesh_0'] = wb_mesh_0 # Deformed state mesh wb_mesh_1 = k3d.mesh(X1_Id, I_Ei, color_map=k3d.colormaps.basic_color_maps.Jet, attribute=U_1[:, 2], color_range=[np.min(U_1), np.max(U_1)], side='double') pb.plot_fig += wb_mesh_1 pb.objects['wb_mesh_1'] = wb_mesh_1 if self.show_wireframe: k3d_mesh_wireframe = k3d.mesh(X1_Id, I_Ei, color=0x000000, wireframe=True) pb.plot_fig += k3d_mesh_wireframe pb.objects['mesh_wireframe'] = k3d_mesh_wireframe def update_plot(self, pb): X_Id = self.xdomain.mesh.X_Id print('analysis: update_plot') if len(self.hist.U_t) == 0: U_1 = np.zeros_like(X_Id) print('analysis: U_I', ) else: U_1 = self.hist.U_t[-1] U_1 = U_1.reshape(-1, self.xdomain.fets.n_nodal_dofs)[:, :3] X1_Id = X_Id + U_1 X1_Id = X1_Id.astype(np.float32) I_Ei = self.xdomain.I_Ei.astype(np.uint32) mesh = pb.objects['wb_mesh_1'] mesh.vertices = X1_Id mesh.indices = I_Ei mesh.attribute = U_1[:, 2] mesh.color_range = [np.min(U_1), np.max(U_1)] if self.show_wireframe: wireframe = pb.objects['mesh_wireframe'] wireframe.vertices = X1_Id wireframe.indices = I_Ei def get_Pw(self): import numpy as np F_to = self.hist.F_t U_to = self.hist.U_t _, _, loaded_dofs = self.bcs.bc_loaded F_loaded = np.sum(F_to[:, loaded_dofs], axis=-1) U_loaded = np.average(U_to[:, loaded_dofs], axis=-1) return U_loaded, F_loaded
class Slide32(bu.InteractiveModel, bu.InjectSymbExpr): name = 'Slide 3.4' symb_class = Slide23Expr E_T = bu.Float(28000, MAT=True) gamma_T = bu.Float(10, MAT=True) K_T = bu.Float(8, MAT=True) S_T = bu.Float(1, MAT=True) c_T = bu.Float(1, MAT=True) bartau = bu.Float(28000, MAT=True) E_N = bu.Float(28000, MAT=True) S_N = bu.Float(1, MAT=True) c_N = bu.Float(1, MAT=True) m = bu.Float(0.1, MAT=True) f_t = bu.Float(3, MAT=True) f_c = bu.Float(30, MAT=True) f_c0 = bu.Float(20, MAT=True) eta = bu.Float(0.5, MAT=True) r = bu.Float(1, MAT=True) c_NT = tr.Property(bu.Float, depends_on='state_changed') @tr.cached_property def _get_c_NT(self): return np.sqrt(self.c_N * self.c_T) S_NT = tr.Property(bu.Float, depends_on='state_changed') @tr.cached_property def _get_S_NT(self): return np.sqrt(self.S_N * self.S_T) def C_codegen(self): import os import os.path as osp C_code = [] for symb_name, symb_params in self.symb.symb_expressions: c_func_name = 'get_' + symb_name c_func = ccode(c_func_name, getattr(self.symb, symb_name), 'SLIDE33') C_code.append(c_func) code_dirname = 'sympy_codegen' code_fname = 'SLIDE33_3D' home_dir = osp.expanduser('~') code_dir = osp.join(home_dir, code_dirname) if not osp.exists(code_dir): os.makedirs(code_dir) code_file = osp.join(code_dir, code_fname) print('generated code_file', code_file) h_file = code_file + '.h' c_file = code_file + '.c' h_f = open(h_file, 'w') c_f = open(c_file, 'w') if True: for function_C in C_code: h_f.write(function_C[1][1]) c_f.write(function_C[0][1]) h_f.close() c_f.close() ipw_view = bu.View(bu.Item('E_T', latex='E_T'), bu.Item('S_T'), bu.Item('c_T'), bu.Item('gamma_T', latex=r'\gamma_\mathrm{T}'), bu.Item('K_T'), bu.Item('bartau', latex=r'\bar{\tau}'), bu.Item('E_N'), bu.Item('S_N'), bu.Item('c_N'), bu.Item('m'), bu.Item('f_t'), bu.Item('f_c', latex=r'f_\mathrm{c}'), bu.Item('f_c0', latex=r'f_\mathrm{c0}'), bu.Item('eta', minmax=(0, 1)), bu.Item('r')) damage_interaction = tr.Enum('final', 'geometric', 'arithmetic') get_phi_ = tr.Property def _get_get_phi_(self): return self.symb.get_phi_final_ get_Phi_ = tr.Property def _get_get_Phi_(self): return self.symb.get_Phi_final_ def get_f_df(self, s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k): if self.debug_level == 1: print('>>>>>>>>>>>>> get_f_df(): INPUT') print('u_N', w_n1) print('u_T_x', s_x_n1) print('u_T_y', s_y_n1) print('Eps_k', Eps_k) print('Sig_k', Sig_k) print('<<<<<<<<<<<<< get_f_df(): INPUT') Sig_k = self.symb.get_Sig_(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k)[0] dSig_dEps_k = self.symb.get_dSig_dEps_(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k) H_sig_pi = self.symb.get_H_sig_pi_(Sig_k) f_k = np.array([self.symb.get_f_(Eps_k, Sig_k, H_sig_pi)]) df_dSig_k = self.symb.get_df_dSig_(Eps_k, Sig_k, H_sig_pi) ddf_dEps_k = self.symb.get_ddf_dEps_(Eps_k, Sig_k, H_sig_pi) df_dEps_k = np.einsum('ik,ji->jk', df_dSig_k, dSig_dEps_k) + ddf_dEps_k Phi_k = self.get_Phi_(Eps_k, Sig_k, H_sig_pi) dEps_dlambda_k = Phi_k df_dlambda = np.einsum('ki,kj->ij', df_dEps_k, dEps_dlambda_k) df_k = df_dlambda if self.debug_level == 1: print('>>>>>>>>>>>>> get_f_df(): OUTPUT') print('Sig_k', Sig_k) print('f_k', f_k) print('df_k', df_k) print('<<<<<<<<<<<<< get_f_df(): OUTPUT') return f_k, df_k, Sig_k def get_Eps_k1(self, s_x_n1, s_y_n1, w_n1, Eps_n, lam_k, Sig_k, Eps_k): '''Evolution equations: The update of state variables for an updated $\lambda_k$ is performed using this procedure. ''' Sig_k = self.symb.get_Sig_(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k)[0] H_sig_pi = self.symb.get_H_sig_pi_(Sig_k) Phi_k = self.get_Phi_(Eps_k, Sig_k, H_sig_pi) Eps_k1 = Eps_n + lam_k * Phi_k[:, 0] Eps_k1[-2] = min(0.99, Eps_k1[-2]) Eps_k1[-1] = min(0.99, Eps_k1[-1]) return Eps_k1 rtol = bu.Float(1e-3, ALG=True) '''Relative tolerance of the return mapping algorithm related to the tensile strength ''' f_lambda_recording = bu.Bool(False) f_list = tr.List lam_list = tr.List lam_max = bu.Float(1) def reset_flam_profile(self): self.f_list = [] self.lam_list = [] def record_flam_profile(self, lam_k, s_x_n1, s_y_n1, w_n1, Sig_n, Eps_n): Eps_k = np.copy(Eps_n) Sig_k = np.copy(Sig_n) lam_range = np.linspace(0, self.lam_max, 30) f_range = np.zeros_like(lam_range) for i, lam in enumerate(lam_range): Eps_k = self.get_Eps_k1(s_x_n1, s_y_n1, w_n1, Eps_n, lam - lam_k, Sig_k, Eps_k) f_k, df_k, Sig_k = self.get_f_df(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k) f_range[i] = f_k self.lam_list.append(lam_range) self.f_list.append(np.array(f_range)) debug_level = bu.Int(0) def get_sig_n1(self, s_x_n1, s_y_n1, w_n1, Sig_n, Eps_n, k_max): '''Return mapping iteration: This function represents a user subroutine in a finite element code or in a lattice model. The input is $s_{n+1}$ and the state variables representing the state in the previous solved step $\boldsymbol{\mathcal{E}}_n$. The procedure returns the stresses and state variables of $\boldsymbol{\mathcal{S}}_{n+1}$ and $\boldsymbol{\mathcal{E}}_{n+1}$ ''' if self.f_lambda_recording: self.reset_flam_profile() Eps_k = np.copy(Eps_n) Sig_k = np.copy(Sig_n) lam_k = 0 f_k, df_k, Sig_k = self.get_f_df(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k) f_k_norm = np.linalg.norm(f_k) f_k_trial = f_k[0] k = 0 while k < k_max: if self.debug_level == 1: print('============= RETURN STEP:', k) if self.f_lambda_recording: self.record_flam_profile(lam_k, s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k) if f_k_trial < 0 or f_k_norm < self.f_t * self.rtol: if self.debug_level == 1: print('============= SUCCESS') return Eps_k, Sig_k, k + 1 dlam = np.linalg.solve(df_k, -f_k) lam_k += dlam if self.debug_level == 1: print('lam_k', lam_k, dlam) Eps_k = self.get_Eps_k1(s_x_n1, s_y_n1, w_n1, Eps_n, lam_k, Sig_k, Eps_k) f_k, df_k, Sig_k = self.get_f_df(s_x_n1, s_y_n1, w_n1, Sig_k, Eps_k) f_k_norm = np.linalg.norm(f_k) k += 1 else: raise ConvergenceError('no convergence for step', [s_x_n1, s_y_n1, w_n1]) Eps_names = tr.Property @tr.cached_property def _get_Eps_names(self): return [eps.codename for eps in self.symb.Eps] Sig_names = tr.Property @tr.cached_property def _get_Sig_names(self): return [sig.codename for sig in self.symb.Sig] state_var_shapes = tr.Property @tr.cached_property def _get_state_var_shapes(self): '''State variables shapes: variables are using the codename string in the Cymbol definition Since the same string is used in the lambdify method via print_Symbol method defined in Cymbol as well''' return {eps_name: () for eps_name in self.Eps_names + self.Sig_names} def plot_f_state(self, ax, Eps, Sig, color='red'): lower = -self.f_c * 1.05 upper = self.f_t + 0.05 * self.f_c lower_tau = -self.bartau * 2 upper_tau = self.bartau * 2 lower_tau = -10 upper_tau = 10 tau_x, tau_y, sig = Sig[:3] tau = np.sqrt(tau_x**2 + tau_y**2) sig_ts, tau_x_ts = np.mgrid[lower:upper:201j, lower_tau:upper_tau:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + tau_x_ts.shape) Eps_ts = np.zeros_like(Sig_ts) Sig_ts[0, ...] = tau_x_ts Sig_ts[2, ...] = sig_ts Sig_ts[3:, ...] = Sig[3:, np.newaxis, np.newaxis] Sig_ts[4, ...] = np.sqrt(Sig_ts[4, ...]**2 + Sig_ts[5, ...]**2) Sig_ts[5, ...] = 0 Eps_ts[...] = Eps[:, np.newaxis, np.newaxis] Eps_ts[0, ...] = np.sqrt(Eps_ts[0, ...]**2 + Eps_ts[1, ...]**2) Eps_ts[1, ...] = 0 Eps_ts[4, ...] = np.sqrt(Eps_ts[4, ...]**2 + Eps_ts[5, ...]**2) Eps_ts[5, ...] = 0 H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) f_ts = np.array([self.symb.get_f_(Eps_ts, Sig_ts, H_sig_pi)]) #phi_ts = np.array([self.symb.get_phi_(Eps_ts, Sig_ts)]) ax.set_title('threshold function') omega_N = Eps_ts[-1, :] omega_T = Eps_ts[-2, :] sig_ts_eff = sig_ts / (1 - H_sig_pi * omega_N) tau_x_ts_eff = tau_x_ts / (1 - omega_T) #ax.contour(sig_ts_eff, tau_x_ts_eff, f_ts[0,...], [0], colors=('green',)) ax.contour(sig_ts, tau_x_ts, f_ts[0, ...], [0], colors=(color, )) #ax.contour(sig_ts, tau_x_ts, phi_ts[0, ...]) ax.plot(sig, tau, marker='H', color='red') ax.plot([lower, upper], [0, 0], color='black', lw=0.4) ax.plot([0, 0], [lower_tau, upper_tau], color='black', lw=0.4) ax.set_ylim(ymin=0, ymax=upper_tau) def plot_f(self, ax): lower = -self.f_c * 1.05 upper = self.f_t + 0.05 * self.f_c lower_tau = -self.bartau * 2 upper_tau = self.bartau * 2 sig_ts, tau_x_ts = np.mgrid[lower:upper:201j, lower_tau:upper_tau:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + tau_x_ts.shape) Sig_ts[0, :] = tau_x_ts Sig_ts[2, :] = sig_ts Eps_ts = np.zeros_like(Sig_ts) H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) f_ts = np.array([self.symb.get_f_(Eps_ts, Sig_ts, H_sig_pi)]) phi_ts = np.array([self.get_phi_(Eps_ts, Sig_ts, H_sig_pi)]) ax.set_title('threshold function') ax.contour(sig_ts, tau_x_ts, f_ts[0, ...], levels=0) ax.contour(sig_ts, tau_x_ts, phi_ts[0, ...]) ax.plot([lower, upper], [0, 0], color='black', lw=0.4) ax.plot([0, 0], [lower_tau, upper_tau], color='black', lw=0.4) def plot_phi_Y(self, ax): lower_N = 0 upper_N = 1 lower_T = 0 upper_T = 1 Y_N, Y_T = np.mgrid[lower_N:upper_N:201j, lower_T:upper_T:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + Y_T.shape) Sig_ts[0, :] = Y_N Sig_ts[2, :] = Y_T Eps_ts = np.zeros_like(Sig_ts) H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) phi_ts = np.array([self.get_phi_(Eps_ts, Sig_ts, H_sig_pi)]) ax.set_title('potential function') ax.contour(Y_N, Y_T, phi_ts[0, ...]) #, levels=0) def update_plot(self, ax): self.plot_f(ax) def plot3d(self, pb): delta_f = self.f_t * 0.05 lower = -self.f_c - delta_f upper = self.f_t + delta_f lower_tau = -self.bartau * 2 upper_tau = self.bartau * 2 sig_ts, tau_x_ts = np.mgrid[lower:upper:201j, lower_tau:upper_tau:201j] Sig_ts = np.zeros((len(self.symb.Eps), ) + tau_x_ts.shape) Sig_ts[0, :] = tau_x_ts Sig_ts[2, :] = sig_ts Eps_ts = np.zeros_like(Sig_ts) H_sig_pi = self.symb.get_H_sig_pi_(Sig_ts) f_ts = np.array([self.symb.get_f_(Eps_ts, Sig_ts, H_sig_pi)]) # max_f_c = self.f_c # max_f_t = self.f_t # max_tau_bar = self.bartau # X_a, Y_a = np.mgrid[-1.1*max_f_c:1.1*max_f_t:210j, -max_tau_bar:max_tau_bar:210j] # Z_a = self.symb.get_f_solved(X_a, Y_a) * self.z_scale # #ax.contour(X_a, Y_a, Z_a, levels=8) Z_0 = np.zeros_like(f_ts) self.surface = k3d.surface(f_ts.astype(np.float32)) pb.plot_fig += self.surface self.surface0 = k3d.surface(Z_0.astype(np.float32), color=0xbbbbbe) pb.plot_fig += self.surface0
class WBCell(bu.Model): name = 'Waterbomb cell' plot_backend = 'k3d' K3D_NODES_LABELS = 'nodes_labels' K3D_WIREFRAME = 'wireframe' K3D_CELL_MESH = 'cell_mesh' show_base_cell_ui = bu.Bool(True) show_node_labels = bu.Bool(False, GEO=True) show_wireframe = bu.Bool(True, GEO=True) opacity = bu.Float(0.6, GEO=True) ipw_view = bu.View( bu.Item('show_node_labels'), bu.Item('show_wireframe'), ) if show_base_cell_ui else bu.View() X_Ia = tr.Property(depends_on='+GEO') '''Array with nodal coordinates I - node, a - dimension ''' @tr.cached_property def _get_X_Ia(self): return np.array([[0., 0., 0.], [1000., 930.99634691, 365.02849483], [-1000., 930.99634691, 365.02849483], [1000., -930.99634691, 365.02849483], [-1000., -930.99634691, 365.02849483], [764.84218728, 0., 644.21768724], [-764.84218728, 0., 644.21768724]]) I_Fi = tr.Property '''Triangle mapping ''' @tr.cached_property def _get_I_Fi(self): return np.array([[0, 1, 2], [0, 3, 4], [0, 1, 5], [0, 5, 3], [0, 2, 6], [0, 6, 4]]).astype(np.int32) def setup_plot(self, pb): X_Ia = self.X_Ia.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) cell_mesh = k3d.mesh(X_Ia, I_Fi, opacity=self.opacity, color=0x999999, side='double') pb.plot_fig += cell_mesh pb.objects[self.K3D_CELL_MESH] = cell_mesh if self.show_wireframe: self._add_wireframe_to_fig(pb, X_Ia, I_Fi) if self.show_node_labels: self._add_nodes_labels_to_fig(pb, self.X_Ia) def update_plot(self, pb): # If cell interface was embedded in higher class, this method will be called when user changes parameters # However, cell mesh object will not be there because setup_plot was not called if self.K3D_CELL_MESH in pb.objects: X_Ia = self.X_Ia.astype(np.float32) I_Fi = self.I_Fi.astype(np.uint32) cell_mesh = pb.objects[self.K3D_CELL_MESH] cell_mesh.vertices = X_Ia cell_mesh.indices = I_Fi cell_mesh.attributes = X_Ia[:, 2] if self.show_wireframe: if self.K3D_WIREFRAME in pb.objects: wireframe = pb.objects[self.K3D_WIREFRAME] wireframe.vertices = X_Ia wireframe.indices = I_Fi else: self._add_wireframe_to_fig(pb, X_Ia, I_Fi) else: if self.K3D_WIREFRAME in pb.objects: pb.clear_object(self.K3D_WIREFRAME) if self.show_node_labels: if self.K3D_NODES_LABELS in pb.objects: pb.clear_object(self.K3D_NODES_LABELS) self._add_nodes_labels_to_fig(pb, self.X_Ia) else: if self.K3D_NODES_LABELS in pb.objects: pb.clear_object(self.K3D_NODES_LABELS) def _add_wireframe_to_fig(self, pb, X_Ia, I_Fi): k3d_mesh_wireframe = k3d.mesh(X_Ia, I_Fi, color=0x000000, wireframe=True) pb.plot_fig += k3d_mesh_wireframe pb.objects[self.K3D_WIREFRAME] = k3d_mesh_wireframe def _add_nodes_labels_to_fig(self, pb, X_Ia): text_list = [] for I, X_a in enumerate(X_Ia): k3d_text = k3d.text('%g' % I, tuple(X_a), label_box=False, size=0.8, color=0x00FF00) pb.plot_fig += k3d_text text_list.append(k3d_text) pb.objects[self.K3D_NODES_LABELS] = text_list
class WBCell5Param(WBCell, bu.InjectSymbExpr): name = 'waterbomb cell 5p' symb_class = WBCellSymb5ParamXL plot_backend = 'k3d' gamma = bu.Float(1, GEO=True) x_ur = bu.Float(1000, GEO=True) a = bu.Float(1000, GEO=True) b = bu.Float(1000, GEO=True) c = bu.Float(1000, GEO=True) a_low = bu.Float(2000) b_low = bu.Float(2000) c_low = bu.Float(2000) a_high = bu.Float(2000) b_high = bu.Float(2000) c_high = bu.Float(2000) y_sol1 = bu.Bool(False, GEO=True) x_sol1 = bu.Bool(False, GEO=True) continuous_update = True ipw_view = bu.View( bu.Item('gamma', latex=r'\gamma', editor=bu.FloatRangeEditor( low=1e-6, high=np.pi / 2, n_steps=101, continuous_update=continuous_update)), bu.Item('x_ur', latex=r'x^\urcorner', editor=bu.FloatRangeEditor( low=-2000, high=3000, n_steps=101, continuous_update=continuous_update)), bu.Item('a', latex='a', editor=bu.FloatRangeEditor( low=1e-6, high_name='a_high', n_steps=101, continuous_update=continuous_update)), bu.Item('b', latex='b', editor=bu.FloatRangeEditor( low=1e-6, high_name='b_high', n_steps=101, continuous_update=continuous_update)), bu.Item('c', latex='c', editor=bu.FloatRangeEditor( low=1e-6, high_name='c_high', n_steps=101, continuous_update=continuous_update)), bu.Item('y_sol1'), bu.Item('x_sol1'), *WBCell.ipw_view.content, ) n_I = tr.Property def _get_n_I(self): return len(self.X_Ia) X_Ia = tr.Property(depends_on='+GEO') '''Array with nodal coordinates I - node, a - dimension ''' @tr.cached_property def _get_X_Ia(self): gamma = self.gamma alpha = np.pi / 2 - gamma P_1 = self.symb.get_P_1() P_2 = self.symb.get_P_2() P_3 = self.symb.get_P_3() # print('P', P_1, P_2, P_3, P_1*P_2*P_3) x_ur = self.x_ur if self.y_sol1: A = self.symb.get_A1_() B = self.symb.get_B1_() C = self.symb.get_C1_() if self.x_sol1: x_ul = self.symb.get_x_ul11_(A, B, C) else: x_ul = self.symb.get_x_ul12_(A, B, C) y_ul = self.symb.get_y_ul1_(x_ul) y_ur = self.symb.get_y_ur1_(x_ul) else: A = self.symb.get_A2_() B = self.symb.get_B2_() C = self.symb.get_C2_() if self.x_sol1: x_ul = self.symb.get_x_ul21_(A, B, C) else: x_ul = self.symb.get_x_ul22_(A, B, C) y_ul = self.symb.get_y_ul2_(x_ul) y_ur = self.symb.get_y_ur2_(x_ul) z_ur = self.symb.get_z_ur_(x_ul) z_ul = self.symb.get_z_ul_(x_ul) x_ll = -x_ur x_lr = -x_ul y_ll = -y_ur y_lr = -y_ul z_ll = z_ur z_lr = z_ul V_r_1 = self.symb.get_V_r_1().flatten() V_l_1 = self.symb.get_V_l_1().flatten() return np.array( [ [0, 0, 0], # 0 point [x_ur, y_ur, z_ur], #U++ [x_ul, y_ul, z_ul], #U-+ ul [x_lr, y_lr, z_lr], #U+- [x_ll, y_ll, z_ll], #U-- V_r_1, V_l_1, ], dtype=np.float_) I_boundary = tr.Array(np.int_, value=[ [2, 1], [6, 5], [4, 3], ]) '''Boundary nodes in 2D array to allow for generation of shell boundary nodes''' X_theta_Ia = tr.Property(depends_on='+GEO') '''Array with nodal coordinates I - node, a - dimension ''' @tr.cached_property def _get_X_theta_Ia(self): D_a = self.symb.get_D_(self.alpha).T theta = self.symb.get_theta_sol(self.alpha) XD_Ia = D_a + self.X_Ia X_center = XD_Ia[1, :] rotation_axes = np.array([[1, 0, 0]], dtype=np.float_) rotation_angles = np.array([-theta], dtype=np.float_) rotation_centers = np.array([X_center], dtype=np.float_) x_single = np.array([XD_Ia], dtype='f') x_pulled_back = x_single - rotation_centers[:, np.newaxis, :] q = axis_angle_to_q(rotation_axes, rotation_angles) x_rotated = qv_mult(q, x_pulled_back) x_pushed_forward = x_rotated + rotation_centers[:, np.newaxis, :] x_translated = x_pushed_forward # + self.translations[:, np.newaxis, :] return x_translated[0, ...] delta_x = tr.Property(depends_on='+GEO') @tr.cached_property def _get_delta_x(self): return self.symb.get_delta_x() delta_phi = tr.Property(depends_on='+GEO') @tr.cached_property def _get_delta_phi(self): return self.symb.get_delta_phi() R_0 = tr.Property(depends_on='+GEO') @tr.cached_property def _get_R_0(self): return self.symb.get_R_0()
class WBShellFETriangularMesh(FETriangularMesh): """Directly mapped mesh with one-to-one mapping """ name = 'WBShellFETriangularMesh' plot_backend = 'k3d' geo = bu.Instance(WBShellGeometry4P) I_CDij = tr.DelegatesTo('geo') unique_node_map = tr.DelegatesTo('geo') n_phi_plus = tr.DelegatesTo('geo') direct_mesh = bu.Bool(False, DSC=True) subdivision = bu.Float(3, DSC=True) # Will be used in the parent class. Should be here to catch GEO dependency show_wireframe = bu.Bool(True, GEO=True) ipw_view = bu.View( *FETriangularMesh.ipw_view.content, bu.Item('subdivision'), bu.Item('direct_mesh'), bu.Item('export_vtk'), bu.Item('show_wireframe'), ) mesh = tr.Property(depends_on='state_changed') @tr.cached_property def _get_mesh(self): X_Id = self.geo.X_Ia I_Fi = self.geo.I_Fi mesh_size = np.linalg.norm(X_Id[1] - X_Id[0]) / self.subdivision with pygmsh.geo.Geometry() as geom: xpoints = np.array( [geom.add_point(X_d, mesh_size=mesh_size) for X_d in X_Id]) for I_i in I_Fi: # Create points. Facet(geom, xpoints[I_i]) # geom.add_polygon(X_id, mesh_size=mesh_size) gmsh.model.geo.remove_all_duplicates() mesh = geom.generate_mesh() return mesh X_Id = tr.Property def _get_X_Id(self): if self.direct_mesh: return self.geo.X_Ia return np.array(self.mesh.points, dtype=np.float_) I_Fi = tr.Property def _get_I_Fi(self): if self.direct_mesh: return self.geo.I_Fi return self.mesh.cells[1][1] bc_fixed_nodes = tr.Array(np.int_, value=[]) bc_loaded_nodes = tr.Array(np.int_, value=[]) export_vtk = bu.Button @tr.observe('export_vtk') def write(self, event=None): self.mesh.write("test_shell_mesh.vtk") def setup_plot(self, pb): super(WBShellFETriangularMesh, self).setup_plot(pb) X_Id = self.X_Id.astype(np.float32) fixed_nodes = self.bc_fixed_nodes loaded_nodes = self.bc_loaded_nodes X_Ma = X_Id[fixed_nodes] k3d_fixed_nodes = k3d.points(X_Ma, color=0x22ffff, point_size=100) pb.plot_fig += k3d_fixed_nodes pb.objects['fixed_nodes'] = k3d_fixed_nodes X_Ma = X_Id[loaded_nodes] k3d_loaded_nodes = k3d.points(X_Ma, color=0xff22ff, point_size=100) pb.plot_fig += k3d_loaded_nodes pb.objects['loaded_nodes'] = k3d_loaded_nodes def update_plot(self, pb): super(WBShellFETriangularMesh, self).update_plot(pb) fixed_nodes = self.bc_fixed_nodes loaded_nodes = self.bc_loaded_nodes X_Id = self.X_Id.astype(np.float32) pb.objects['fixed_nodes'].positions = X_Id[fixed_nodes] pb.objects['loaded_nodes'].positions = X_Id[loaded_nodes]