def __init__(self, swc_file, random_seed=10): nrn.load_neuron_modules(None, None) self._hobj = h.Biophys1(swc_file) self._morphology = Morphology(self._hobj) self._morphology.set_seg_props() self._morphology.calc_seg_coords() self._prng = np.random.RandomState(random_seed) self._secs = [] self._save_sections()
def make_morphologies(self): """Creating a Morphology object for each biophysical model""" # TODO: Let Morphology take care of the cache # TODO: Let other types have morphologies # TODO: Get all available morphologies from TypesTable or group for gid, cell in self._rank_node_gids.items(): if not isinstance(cell, BioCell): continue morphology_file = cell.morphology_file if morphology_file in self._morphologies_cache: # create a single morphology object for each model_group which share that morphology morph = self._morphologies_cache[morphology_file] # associate morphology with a cell cell.set_morphology(morph) self._morphology_lookup[morphology_file].append(cell.gid) else: hobj = cell.hobj # get hoc object (hobj) from the first cell with a new morphologys morph = Morphology(hobj) # associate morphology with a cell cell.set_morphology(morph) # create a single morphology object for each model_group which share that morphology self._morphologies_cache[morphology_file] = morph self._morphology_lookup[morphology_file] = [cell.gid] self.io.barrier()
def make_morphologies(self): """Creating a Morphology object for each biophysical model""" for node in self._local_nodes: if node.cell_type == CellTypes.Biophysical: node_type_id = node.node_type_id morphology_file = node.morphology_file if node_type_id in self.__morphologies_cache: # create a single morphology object for each model_group which share that morphology morph = self.__morphologies_cache[node_type_id] # associate morphology with a cell self._cells[node.node_id].set_morphology(morph) else: hobj = self._cells[ node. node_id].hobj # get hoc object (hobj) from the first cell with a new morphologys morph = Morphology(hobj) # associate morphology with a cell self._cells[node.node_id].set_morphology(morph) # create a single morphology object for each model_group which share that morphology self.__morphologies_cache[node_type_id] = morph io.print2log0(" Created morphologies") self._morphologies_built = True
class SWCReader(object): def __init__(self, swc_file, random_seed=10): nrn.load_neuron_modules(None, None) self._hobj = h.Biophys1(swc_file) self._morphology = Morphology(self._hobj) self._morphology.set_seg_props() self._morphology.calc_seg_coords() self._prng = np.random.RandomState(random_seed) self._secs = [] self._save_sections() def _save_sections(self): for sec in self._hobj.all: for _ in sec: self._secs.append(sec) def find_sections(self, section_names, distance_range): return self._morphology.find_sections(section_names, distance_range) def choose_sections(self, section_names, distance_range, n_sections=1): secs, probs = self.find_sections(section_names, distance_range) secs_ix = self._prng.choice(secs, n_sections, p=probs) return secs_ix, self._morphology.seg_prop['x'][secs_ix] def get_coord(self, sec_ids, sec_xs, soma_center=(0.0, 0.0, 0.0), rotations=None): adjusted = self._morphology.get_soma_pos() - np.array(soma_center) absolute_coords = [] for sec_id, sec_x in zip(sec_ids, sec_xs): sec = self._secs[sec_id] n_coords = int(h.n3d(sec=sec)) coord_indx = int(sec_x * (n_coords - 1)) swc_coords = np.array([ h.x3d(coord_indx, sec=sec), h.x3d(coord_indx, sec=sec), h.x3d(coord_indx, sec=sec) ]) absolute_coords.append(swc_coords - adjusted) if rotations is not None: raise NotImplementedError return absolute_coords def get_dist(self, sec_ids): return [ self._morphology.seg_prop['dist'][sec_id] for sec_id in sec_ids ] def get_type(self, sec_ids): return [ self._morphology.seg_prop['type'][sec_id] for sec_id in sec_ids ]
class SWCReader(object): """A class for pulling out section id, section locations, coordinates from a SWC file. Useful when building a network that requires exact locations of pre- or post-synaptic locations. Requires NEURON. Attributes ========== swc_file - path to a SWC morphology file fix_axon - If set to true, the axon will be removed and replaced with a 30 um stub, as defined for all Allen Cell-Type models (default: True). random_seed - integer value to seed the random genator, used by choose_sections method. """ def __init__(self, swc_file, random_seed=10, fix_axon=True): nrn.load_neuron_modules(None, None) self._swc_file = swc_file self._hobj = h.Biophys1(swc_file) if fix_axon: self._fix_axon() self._morphology = Morphology(self._hobj) self._morphology.set_seg_props() self._morphology.calc_seg_coords() self._prng = np.random.RandomState(random_seed) self._secs = [] self._save_sections() def _save_sections(self): for sec in self._hobj.all: for _ in sec: self._secs.append(sec) def _fix_axon(self): """Removes and refixes axon""" axon_diams = [self._hobj.axon[0].diam, self._hobj.axon[0].diam] for sec in self._hobj.all: section_name = sec.name().split(".")[1][:4] if section_name == 'axon': axon_diams[1] = sec.diam for sec in self._hobj.axon: h.delete_section(sec=sec) h.execute('create axon[2]', self._hobj) for index, sec in enumerate(self._hobj.axon): sec.L = 30 sec.diam = 1 self._hobj.axonal.append(sec=sec) self._hobj.all.append(sec=sec) # need to remove this comment self._hobj.axon[0].connect(self._hobj.soma[0], 1.0, 0) self._hobj.axon[1].connect(self._hobj.axon[0], 1.0, 0) h.define_shape() def get_coord(self, sec_ids, sec_xs, soma_center=(0.0, 0.0, 0.0), rotation_matrix=None): """Takes in a list of section_ids and section_x values and returns a list of coordinates, assuming the soma is at the center of the system. :param sec_ids: [float]: list of N section_ids :param sec_xs: [float]: list of N cooresponding section_x's :param soma_center: location of soma in respect to the coordinate system. (default (0, 0, 0)). :param rotation_matrix: List of rotations (not yet implemented) :return: [(float, float, float)]: for seach sec_ids/sec_xs returna the x,y,z coordinates as a tuple """ adjusted = self._morphology.get_soma_pos() - np.array(soma_center) absolute_coords = [] for sec_id, sec_x in zip(sec_ids, sec_xs): sec = self._secs[sec_id] n_coords = int(h.n3d(sec=sec)) coord_indx = int(sec_x * (n_coords - 1)) swc_coords = np.array([ h.x3d(coord_indx, sec=sec), h.y3d(coord_indx, sec=sec), h.x3d(coord_indx, sec=sec) ]) adjusted_coords = swc_coords - adjusted if rotation_matrix is not None: adjusted_coords = np.dot(rotation_matrix, adjusted_coords) absolute_coords.append(adjusted_coords) return absolute_coords def get_dist(self, sec_ids): """Returns arc-length distance from soma for a list of section_ids""" return [ self._morphology.seg_prop['dist'][sec_id] for sec_id in sec_ids ]
class SWCReader(object): def __init__(self, swc_file, random_seed=10, fix_axon=True): nrn.load_neuron_modules(None, None) self._swc_file = swc_file self._hobj = h.Biophys1(swc_file) if fix_axon: self._fix_axon() self._morphology = Morphology(self._hobj) self._morphology.set_seg_props() self._morphology.calc_seg_coords() self._prng = np.random.RandomState(random_seed) self._secs = [] self._save_sections() def _save_sections(self): for sec in self._hobj.all: for _ in sec: self._secs.append(sec) def _fix_axon(self): """Removes and refixes axon""" axon_diams = [self._hobj.axon[0].diam, self._hobj.axon[0].diam] for sec in self._hobj.all: section_name = sec.name().split(".")[1][:4] if section_name == 'axon': axon_diams[1] = sec.diam for sec in self._hobj.axon: h.delete_section(sec=sec) h.execute('create axon[2]', self._hobj) for index, sec in enumerate(self._hobj.axon): sec.L = 30 sec.diam = 1 self._hobj.axonal.append(sec=sec) self._hobj.all.append(sec=sec) # need to remove this comment self._hobj.axon[0].connect(self._hobj.soma[0], 1.0, 0) self._hobj.axon[1].connect(self._hobj.axon[0], 1.0, 0) h.define_shape() def find_sections(self, section_names, distance_range): return self._morphology.find_sections(section_names, distance_range) def choose_sections(self, section_names, distance_range, n_sections=1): secs, probs = self.find_sections(section_names, distance_range) secs_ix = self._prng.choice(secs, n_sections, p=probs) return secs_ix, self._morphology.seg_prop['x'][secs_ix] def get_coord(self, sec_ids, sec_xs, soma_center=(0.0, 0.0, 0.0), rotations=None): adjusted = self._morphology.get_soma_pos() - np.array(soma_center) absolute_coords = [] for sec_id, sec_x in zip(sec_ids, sec_xs): sec = self._secs[sec_id] n_coords = int(h.n3d(sec=sec)) coord_indx = int(sec_x * (n_coords - 1)) swc_coords = np.array([ h.x3d(coord_indx, sec=sec), h.y3d(coord_indx, sec=sec), h.x3d(coord_indx, sec=sec) ]) absolute_coords.append(swc_coords - adjusted) if rotations is not None: raise NotImplementedError return absolute_coords def get_dist(self, sec_ids): return [ self._morphology.seg_prop['dist'][sec_id] for sec_id in sec_ids ] def get_type(self, sec_ids): return [ self._morphology.seg_prop['type'][sec_id] for sec_id in sec_ids ]
class SWCReader(object): """A class for pulling out section id, section locations, coordinates from a SWC file. Useful when building a network that requires exact locations of pre- or post-synaptic locations. Requires NEURON. Attributes ========== swc_file - path to a SWC morphology file fix_axon - If set to true, the axon will be removed and replaced with a 30 um stub, as defined for all Allen Cell-Type models (default: True). random_seed - integer value to seed the random genator, used by choose_sections method. """ def __init__(self, swc_file, random_seed=10, fix_axon=True): nrn.load_neuron_modules(None, None) self._swc_file = swc_file self._hobj = h.Biophys1(swc_file) if fix_axon: self._fix_axon() self._morphology = Morphology(self._hobj) self._morphology.set_seg_props() self._morphology.calc_seg_coords() self._prng = np.random.RandomState(random_seed) self._secs = [] self._save_sections() def _save_sections(self): for sec in self._hobj.all: for _ in sec: self._secs.append(sec) def _fix_axon(self): """Removes and refixes axon""" axon_diams = [self._hobj.axon[0].diam, self._hobj.axon[0].diam] for sec in self._hobj.all: section_name = sec.name().split(".")[1][:4] if section_name == 'axon': axon_diams[1] = sec.diam for sec in self._hobj.axon: h.delete_section(sec=sec) h.execute('create axon[2]', self._hobj) for index, sec in enumerate(self._hobj.axon): sec.L = 30 sec.diam = 1 self._hobj.axonal.append(sec=sec) self._hobj.all.append(sec=sec) # need to remove this comment self._hobj.axon[0].connect(self._hobj.soma[0], 1.0, 0) self._hobj.axon[1].connect(self._hobj.axon[0], 1.0, 0) h.define_shape() def find_sections(self, section_names, distance_range): """Retrieves a list of sections ids and section x's given a section name/type (eg axon, soma, apic, dend) and the distance from the soma. :param section_names: 'soma', 'dend', 'apic', 'axon' :param distance_range: [float, float]: distance range of sections from the soma, in um. :return: [float], [float]: A list of all section_ids and a list of all segment_x values (as defined by NEURON) that meet the given critera. """ return self._morphology.find_sections(section_names, distance_range) def choose_sections(self, section_names, distance_range, n_sections=1): """Similar to find_sections, but will only N=n_section number of sections_ids/x values randomly selected (may return less if there aren't as many sections :param section_names: 'soma', 'dend', 'apic', 'axon' :param distance_range: [float, float]: distance range of sections from the soma, in um. :param n_sections: int: maximum number of sections to select :return: [float], [float]: A list of all section_ids and a list of all segment_x values (as defined by NEURON) that meet the given critera. """ secs, probs = self.find_sections(section_names, distance_range) secs_ix = self._prng.choice(secs, n_sections, p=probs) return secs_ix, self._morphology.seg_prop['x'][secs_ix] def get_coord(self, sec_ids, sec_xs, soma_center=(0.0, 0.0, 0.0), rotations=None): """Takes in a list of section_ids and section_x values and returns a list of coordinates, assuming the soma is at the center of the system. :param sec_ids: [float]: list of N section_ids :param sec_xs: [float]: list of N cooresponding section_x's :param soma_center: location of soma in respect to the coordinate system. (default (0, 0, 0)). :param rotations: List of rotations (not yet implemented) :return: [(float, float, float)]: for seach sec_ids/sec_xs returna the x,y,z coordinates as a tuple """ adjusted = self._morphology.get_soma_pos() - np.array(soma_center) absolute_coords = [] for sec_id, sec_x in zip(sec_ids, sec_xs): sec = self._secs[sec_id] n_coords = int(h.n3d(sec=sec)) coord_indx = int(sec_x*(n_coords - 1)) swc_coords = np.array([h.x3d(coord_indx, sec=sec), h.y3d(coord_indx, sec=sec), h.x3d(coord_indx, sec=sec)]) absolute_coords.append(swc_coords - adjusted) if rotations is not None: raise NotImplementedError return absolute_coords def get_dist(self, sec_ids): """Returns arc-length distance from soma for a list of section_ids""" return [self._morphology.seg_prop['dist'][sec_id] for sec_id in sec_ids] def get_type(self, sec_ids): """For each section_id returns the type (1: soma, 2: axon, 3: dend, 4: apic""" return [self._morphology.seg_prop['type'][sec_id] for sec_id in sec_ids]