Example #1
0
def build_spike_trains(N=N_LIF_exc + N_LIF_inh):
    from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator
    from bmtk.utils.reports.spike_trains import sort_order

    # Steadily increase the firing rate of each virtual cell from 1.0 Hz (node 0) to 50.0 Hz (node 12499)
    firing_rates = 500 * np.ones(N)

    psg = PoissonSpikeGenerator(population='external')
    for i in range(N):
        # create a new spike-train for each node.
        psg.add(node_ids=i, firing_rate=firing_rates[i], times=(0.0, 3.0))

    psg.to_sonata('inputs/injective_500hz.h5', sort_order=sort_order.by_id)
def build_input(t_sim, numPN_A=640, numPN_C=260, numBask=100):
    print("Building input for " + str(t_sim) + " (ms)")
    psg = PoissonSpikeGenerator(population='mthalamus')
    psg.add(
        node_ids=range(numPN_A + numPN_C),  # Have nodes to match mthalamus
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numPN_A + numPN_C, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('mthalamus_spikes.h5')

    psg = PoissonSpikeGenerator(population='exc_bg_bask')
    psg.add(
        node_ids=range(numBask),  # Have nodes to match mthalamus
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numBask, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('exc_bg_bask_spikes.h5')
    print("Done")
Example #3
0
import os
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

if not os.path.exists('inputs'):
    os.mkdir('inputs')

psg = PoissonSpikeGenerator(population='external')
psg.add(
    node_ids=range(100),
    firing_rate=10.0,
)
psg.add(node_ids=range(100), firing_rate=10.0, times=(0.0, 3.0))
psg.to_sonata('inputs/external_spike_trains.h5')
Example #4
0
                 network_dir='./network',
                 tstop=t_sim, dt=0.1,
                 spikes_inputs=[('mthalamus', 'mthalamus_spikes.h5'),
                                ('exc_bg_bask', 'exc_bg_bask_spikes.h5'),
                                ('exc_bg_chn', 'exc_bg_chn_spikes.h5')],
                 components_dir='biophys_components',
                 compile_mechanisms=True)

from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

#
psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(node_ids=range(numPN_A + numPN_C),  # Have nodes to match mthalamus
        firing_rate=0.2,  # 15 Hz, we can also pass in a nonhomoegenous function/array
        times=(0.0, t_sim))  # Firing starts at 0 s up to 3 s
psg.to_sonata('mthalamus_spikes.h5')

psg = PoissonSpikeGenerator(population='exc_bg_bask')
psg.add(node_ids=range(numBask),  # Have nodes to match mthalamus
        firing_rate=0.2,  # 15 Hz, we can also pass in a nonhomoegenous function/array
        times=(0.0, t_sim))  # Firing starts at 0 s up to 3 s
psg.to_sonata('exc_bg_bask_spikes.h5')

psg = PoissonSpikeGenerator(population='exc_bg_chn')
psg.add(node_ids=range(numAAC),  # Have nodes to match mthalamus
        firing_rate=0.2,  # 15 Hz, we can also pass in a nonhomoegenous function/array
        times=(0.0, t_sim))  # Firing starts at 0 s up to 3 s
psg.to_sonata('exc_bg_chn_spikes.h5')


def syn_dist_delay(source, target, min_delay, pos):
Example #5
0
thalamus.save_nodes(output_dir='network')
thalamus.save_edges(output_dir='network')

print("External nodes and edges built")

from bmtk.utils.sim_setup import build_env_bionet

build_env_bionet(
    base_dir='./',
    network_dir='./network',
    tstop=1000.0,
    dt=0.1,
    spikes_inputs=[(
        'mthalamus',  # Name of population which spikes will be generated for
        'mthalamus_spikes.h5')],
    report_vars=['v', 'cai'
                 ],  # Record membrane potential and calcium (default soma)
    components_dir='biophys_components',
    compile_mechanisms=True)

from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(
    node_ids=range(numPN_A + numPN_C +
                   numBask),  # Have nodes to match mthalamus
    firing_rate=
    15.0,  # 15 Hz, we can also pass in a nonhomoegenous function/array
    times=(0.0, 3.0))  # Firing starts at 0 s up to 3 s
psg.to_sonata('mthalamus_spikes.h5')
Example #6
0
# SPIKE TRAINS
t_sim = 40000

#build_env_bionet(base_dir='./',
#                 network_dir='./network',
#                 tstop=t_sim, dt=0.1,
#                 report_vars=['v'],
#                 components_dir='biophys_components',
#                 config_file='config.json',
#                 spikes_inputs=[('bg_pn_c', '2_cell_inputs/bg_pn_c_spikes.h5'),
#                                ('bg_pv', '2_cell_inputs/bg_pv_spikes.h5')],
#                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='bg_pn_c')
psg.add(
    node_ids=range(1),  # need same number as cells
    firing_rate=6,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('2_cell_inputs/bg_pn_c_spikes.h5')

print('Number of background spikes for PN_C: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pv')
psg.add(
    node_ids=range(1),  # need same number as cells
    firing_rate=7.7,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('2_cell_inputs/bg_pv_spikes.h5')

print('Number of background spikes for PV: {}'.format(psg.n_spikes()))
from bmtk.utils.sim_setup import build_env_bionet

build_env_bionet(base_dir='../',
                 network_dir='./network',
                 tstop=t_sim,
                 dt=0.1,
                 spikes_inputs=[('tone', './10_cell_spikes/tone_spikes.csv'),
                                ('shock', './10_cell_spikes/shock_spikes.csv'),
                                ('bg_pn', '10_cell_spikes/bg_pn_spikes.h5'),
                                ('bg_pv', '10_cell_spikes/bg_pv_spikes.h5')],
                 components_dir='../biophys_components',
                 config_file='config.json',
                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='bg_pn')
psg.add(
    node_ids=range(8),  # need same number as cells
    firing_rate=2,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('10_cell_spikes/bg_pn_spikes.h5')

print('Number of background spikes for pn: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pv')
psg.add(
    node_ids=range(2),  # need same number as cells
    firing_rate=8,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('10_cell_spikes/bg_pv_spikes.h5')
print('Number of background spikes for pv: {}'.format(psg.n_spikes()))
                   target_sections=['somatic'],
                   distance_range=[0.0, 150.0],
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='exp2syn')

net.build()
net.save(output_dir='network')
thalamus.build()
thalamus.save(output_dir='network')

psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(
    node_ids=1,  # Have 5 nodes to match mthalamus
    firing_rate=8,  # 2 Hz
    times=(0.0, 1))  # time is in seconds for some reason
psg.to_sonata('virtual_spikes.h5')
print('Number of background spikes: {}'.format(psg.n_spikes()))

from bmtk.utils.sim_setup import build_env_bionet
build_env_bionet(
    base_dir='../',
    network_dir='./network',
    tstop=1000.0,
    dt=0.1,
    report_vars=['v'],
    spikes_inputs=[('mthalamus', 'virtual_spikes.h5')],
    #current_clamp={
    #    'amp': -0.100,
    #    'delay': 250.0,
    #    'duration': 200 #200 for bask 600 for pyr
    #},
Example #9
0
from bmtk.utils.reports.spike_trains import SpikeTrains, PoissonSpikeGenerator

# A constant firing rate of 10 Hz from 0 to 3 seconds
times = (0.0, 3.0)
firing_rate = 10.0

## Uncomment to model the input firing rates on a sin wave
# times = np.linspace(0.0, 3.0, 1000)
# firing_rate = 10.0*np.sin(times) + 10.0

psg = PoissonSpikeGenerator()  # Uses 'seed' to ensure same results every time
psg.add(node_ids='network/thalamus_nodes.h5', firing_rate=firing_rate, times=times, population='thalamus')
psg.to_sonata('thalamus.h5')
psg.to_csv('thalamus.csv')
Example #10
0
def build_input(t_sim,
                numPN_A=569,
                numPN_C=231,
                numBask=93,
                numSOM=51,
                numCR=56):
    print("Building input for " + str(t_sim) + " (ms)")
    psg = PoissonSpikeGenerator(population='vpsi_pyr')
    psg.add(
        node_ids=range(numPN_A + numPN_C),  # Have nodes to match mthalamus
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numPN_A + numPN_C, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('vpsi_pyr_spikes.h5')

    psg = PoissonSpikeGenerator(population='vpsi_pv')
    psg.add(
        node_ids=range(numBask),  # Have nodes to match mthalamus
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numBask, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('vpsi_pv_spikes.h5')

    # THALAMUS

    psg = PoissonSpikeGenerator(population='thalamus_pyr')
    psg.add(
        node_ids=range(numPN_A + numPN_C),  # Have nodes to match 
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numPN_A + numPN_C, 4, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('thalamus_pyr_spikes.h5')

    psg = PoissonSpikeGenerator(population='thalamus_pv')
    psg.add(
        node_ids=range(numBask),  # Have nodes to match 
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numBask, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('thalamus_pv_spikes.h5')

    psg = PoissonSpikeGenerator(population='thalamus_som')
    psg.add(
        node_ids=range(numSOM),  # Have nodes to match 
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numSOM, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('thalamus_som_spikes.h5')

    psg = PoissonSpikeGenerator(population='thalamus_cr')
    psg.add(
        node_ids=range(numCR),  # Have nodes to match 
        #    firing_rate=2.0,    # 15 Hz, we can also pass in a nonhomoegenous function/array
        firing_rate=lognorm_fr_list(numCR, 2, 1),
        times=(0.0, t_sim / 1000.0))  # Firing starts at 0 s up to 3 s
    psg.to_sonata('thalamus_cr_spikes.h5')

    print("Done")
Example #11
0
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

psg = PoissonSpikeGenerator(population='LGN')
psg.add(
    node_ids=range(0, 100),
    firing_rate=8.0,  # we can also pass in a nonhomoegenous function/array
    times=(0.0, 2.0)  # Firing starts at 0 s up to 3 s
)

psg.to_sonata('inputs/lgn_spikes.poisson.h5')
psg.to_csv('inputs/lgn_spikes.poisson.csv')
#                 report_vars=['v'],
#                 spikes_inputs=[('tone', './12_cell_inputs/tone_spikes.csv'),
#                                ('shock', './12_cell_inputs/shock_spikes.csv'),
#                                ('bg_pn', '12_cell_inputs/bg_pn_spikes.h5'),
#                                ('bg_pv', '12_cell_inputs/bg_pv_spikes.h5'),
#                                ('bg_olm', '12_cell_inputs/bg_olm_spikes.h5')],
#                 components_dir='biophys_components',
#                 config_file='config.json',
#                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='tone')
psg.add(
    node_ids=range(1),  # need same number as cells
    firing_rate=2,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/tone_background.h5')

print('Number of background spikes for tone: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pn_a')
psg.add(
    node_ids=range(5),  # need same number as cells
    firing_rate=6,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/bg_pn_a_spikes.h5')

print('Number of background spikes for PN_A: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pn_c')
psg.add(
    node_ids=range(3),  # need same number as cells
Example #13
0
thalamus.build()
thalamus.save_nodes(output_dir='%s/network' % (savedir))
thalamus.save_edges(output_dir='%s/network' % (savedir))

# Set spike trains
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

spikesFilename = '%s/inputs/mthalamus_spikes.h5' % (savedir)
psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(
    node_ids=range(10),  # Have 10 nodes to match mthalamus
    firing_rate=
    15.0,  # 10 Hz, we can also pass in a nonhomoegenous function/array
    times=(0.0, 3.0))  # Firing starts at 0 s up to 3 s
if not (os.path.isfile(spikesFilename)):
    psg.to_sonata(spikesFilename)

# ----------------------------------------------------
# 2. Set up the BioNet environment
# ----------------------------------------------------
'''Before running a simulation, we will need to create the runtime environment, including parameter files, run-script
and configuration files. This will also compile mechanisms'''

# Mechanisms need to be compiled?
compile_mechanisms = True
if os.path.isdir('%s/components/mechanisms/x86_64/' % (savedir)):
    compile_mechanisms = False

# Build network
build_env_bionet(
    base_dir=savedir,
Example #14
0
net.save_edges(output_dir='network')

exc_stim.build()
exc_stim.save_nodes(output_dir='network')

inh_stim.build()
inh_stim.save_nodes(output_dir='network')

from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator
from bmtk.utils.reports.spike_trains.spikes_file_writers import write_csv

exc_psg = PoissonSpikeGenerator(population='exc_stim')
exc_psg.add(node_ids=range(np.sum(num_exc)),
            firing_rate=int(exc_fr) / 1000,
            times=(200.0, 1200.0))
exc_psg.to_sonata('exc_stim_spikes.h5')

inh_psg = PoissonSpikeGenerator(population='inh_stim')
inh_psg.add(node_ids=range(np.sum(num_inh)),
            firing_rate=int(inh_fr) / 1000,
            times=(200.0, 1200.0))
inh_psg.to_sonata('inh_stim_spikes.h5')

from bmtk.utils.sim_setup import build_env_bionet

build_env_bionet(base_dir='./',
                 network_dir='./network',
                 tstop=1200.0,
                 dt=0.1,
                 report_vars=['v'],
                 spikes_inputs=[('exc_stim', 'exc_stim_spikes.h5'),
Example #15
0
import os
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator
from bmtk.utils.reports.spike_trains import SpikeTrains
import matplotlib.pyplot as plt
import numpy as np

if os.path.exists('inputs/ramping_spikes.h5'):
    os.remove('inputs/ramping_spikes.h5')

# Create PGN firing rate
time_range = np.linspace(0.0, 10.0, 20000)
psg = PoissonSpikeGenerator(mode='w')
psg.add(node_ids=[0],
        firing_rate=np.linspace(1.0, 10.0, 30000),
        population='external',
        times=time_range)
psg.to_sonata('inputs/ramping_spikes.h5')

#st = SpikeTrains.from_sonata('inputs/ramping_spikes.h5')
#print(st.get_times(0))
#spikes = np.zeros(100001, dtype=np.int)
#spikes[(st.get_times(0) / 0.1).astype(np.int)] = 1
#plt.plot(spikes)
#plt.show()
#                 report_vars=['v'],
#                 spikes_inputs=[('tone', './12_cell_inputs/tone_spikes.csv'),
#                                ('shock', './12_cell_inputs/shock_spikes.csv'),
#                                ('bg_pn', '12_cell_inputs/bg_pn_spikes.h5'),
#                                ('bg_pv', '12_cell_inputs/bg_pv_spikes.h5'),
#                                ('bg_olm', '12_cell_inputs/bg_olm_spikes.h5')],
#                 components_dir='biophys_components',
#                 config_file='config.json',
#                 compile_mechanisms=False)

psg = PoissonSpikeGenerator(population='bg_pn')
psg.add(
    node_ids=range(8),  # need same number as cells
    firing_rate=1,  # 1 spike every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/bg_pn_spikes.h5')

print('Number of background spikes for pn: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_pv')
psg.add(
    node_ids=range(2),  # need same number as cells
    firing_rate=8,  # 8 spikes every 1 second Hz
    times=(0.0, t_sim / 1000))  # time is in seconds for some reason
psg.to_sonata('12_cell_inputs/bg_pv_spikes.h5')

print('Number of background spikes for pv: {}'.format(psg.n_spikes()))

psg = PoissonSpikeGenerator(population='bg_olm')
psg.add(
    node_ids=range(2),  # need same number as cells
Example #17
0
def build_model():
    if os.path.isdir('network'):
        shutil.rmtree('network')
    if os.path.isdir('2_cell_inputs'):
        shutil.rmtree('2_cell_inputs')

    seed = 967
    random.seed(seed)
    np.random.seed(seed)
    load()
    syn = syn_params_dicts()

    # Initialize our network

    net = NetworkBuilder("biophysical")

    num_inh = [1]

    num_exc = [1]

    ##################################################################################
    ###################################BIOPHY#########################################

    # PN
    net.add_nodes(N=1,
                  pop_name='PyrC',
                  mem_potential='e',
                  model_type='biophysical',
                  model_template='hoc:Cell_C',
                  morphology=None)

    # PV
    net.add_nodes(N=1,
                  pop_name="PV",
                  mem_potential='e',
                  model_type='biophysical',
                  model_template='hoc:basket',
                  morphology=None)

    backgroundPN_C = NetworkBuilder('bg_pn_c')
    backgroundPN_C.add_nodes(N=1,
                             pop_name='tON',
                             potential='exc',
                             model_type='virtual')

    backgroundPV = NetworkBuilder('bg_pv')
    backgroundPV.add_nodes(N=2,
                           pop_name='tON',
                           potential='exc',
                           model_type='virtual')

    # if neuron is sufficiently depolorized enough post synaptic calcium then synaptiic weight goes up

    # pyr->pyr & pyr->PV
    # PV->pyr PV->PV
    def one_to_all(source, target):
        sid = source.node_id
        tid = target.node_id
        print("connecting bio cell {} to bio cell {}".format(sid, tid))
        return 1

    def BG_to_PN_C(source, target):
        sid = source.node_id
        tid = target.node_id
        if sid == tid:
            print("connecting BG {} to PN_C{}".format(sid, tid))
            return 1
        else:
            return 0

    def BG_to_PV(source, target):
        sid = source.node_id
        tid = target.node_id
        sid = sid + 1
        if sid == tid:
            print("connecting BG {} to PV{}".format(sid, tid))
            return 1
        else:
            return 0

    conn = net.add_edges(source=net.nodes(pop_name='PyrC'),
                         target=net.nodes(pop_name="PV"),
                         connection_rule=one_to_all,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='PN2PV.json',
                         model_template=syn['PN2PV.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    conn = net.add_edges(source=net.nodes(pop_name='PV'),
                         target=net.nodes(pop_name="PyrC"),
                         connection_rule=one_to_all,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='PV2PN.json',
                         model_template=syn['PV2PN.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    conn = net.add_edges(source=backgroundPN_C.nodes(),
                         target=net.nodes(pop_name='PyrC'),
                         connection_rule=BG_to_PN_C,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='BG2PNC.json',
                         model_template=syn['BG2PNC.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(2, 0.9),
                        dtypes=[np.int32,
                                np.float])  # places syn on apic at 0.9

    conn = net.add_edges(source=backgroundPV.nodes(),
                         target=net.nodes(pop_name='PV'),
                         connection_rule=BG_to_PV,
                         syn_weight=1.0,
                         delay=0.1,
                         distance_range=[-10000, 10000],
                         dynamics_params='BG2PV.json',
                         model_template=syn['BG2PV.json']['level_of_detail'])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(1, 0.9),
                        dtypes=[np.int32, np.float])

    backgroundPN_C.build()
    backgroundPN_C.save_nodes(output_dir='network')

    backgroundPV.build()
    backgroundPV.save_nodes(output_dir='network')

    net.build()
    net.save(output_dir='network')
    # SPIKE TRAINS
    t_sim = 40000

    # build_env_bionet(base_dir='./',
    #                 network_dir='./network',
    #                 tstop=t_sim, dt=0.1,
    #                 report_vars=['v'],
    #                 components_dir='biophys_components',
    #                 config_file='config.json',
    #                 spikes_inputs=[('bg_pn_c', '2_cell_inputs/bg_pn_c_spikes.h5'),
    #                                ('bg_pv', '2_cell_inputs/bg_pv_spikes.h5')],
    #                 compile_mechanisms=False)

    psg = PoissonSpikeGenerator(population='bg_pn_c')
    psg.add(
        node_ids=range(1),  # need same number as cells
        firing_rate=6,  # 1 spike every 1 second Hz
        times=(0.0, t_sim / 1000))  # time is in seconds for some reason
    psg.to_sonata('2_cell_inputs/bg_pn_c_spikes.h5')

    print('Number of background spikes for PN_C: {}'.format(psg.n_spikes()))

    psg = PoissonSpikeGenerator(population='bg_pv')
    psg.add(
        node_ids=range(1),  # need same number as cells
        firing_rate=7.7,  # 8 spikes every 1 second Hz
        times=(0.0, t_sim / 1000))  # time is in seconds for some reason
    psg.to_sonata('2_cell_inputs/bg_pv_spikes.h5')

    print('Number of background spikes for PV: {}'.format(psg.n_spikes()))