Example #1
0
def train_permute1(net,
                   sess,
                   num_epoch,
                   disp_freq,
                   trainset,
                   testsets,
                   train_init,
                   test_init,
                   lams=[0],
                   BATCH_SIZE=128,
                   sequential=False,
                   dist_merge=False,
                   imm=False,
                   stereo=False,
                   set_active_output=None,
                   kl=False,
                   task_labels=None,
                   dp=False):
    #Initialize lam for every test
    #iterator = initialize_model(net,trainset)
    #train_init,test_init = get_data_init(trainset,testsets,iterator)
    for l in range(len(lams)):
        sess.run(tf.global_variables_initializer())
        sess.run(net.lams.assign(lams[l]))
        train_path = './graph/permute/lam={}/train/'.format(l)
        test_path = './graph/permute/lam={}/test/'.format(l)
        mkdir(train_path)
        mkdir(test_path)
        writer = tf.summary.FileWriter(train_path, tf.get_default_graph())

        test_accs = {}
        test_accs['avg'] = []
        for t in range(len(testsets)):
            test_accs[t] = []
        print('Training Start ... ')

        for idx in range(len(trainset)):
            #train_init = make_data_initializer(trainset[idx],iterator)

            net.store()
            if idx > 0 and sequential:
                print('Setting Prior Knowledge for the next Training ...')
                net.set_prior(sess)

            for e in range(num_epoch):
                if task_labels is not None:
                    set_active_output(task_labels[idx])
                sess.run(train_init[idx])
                try:
                    while True:
                        _, summaries, step = sess.run(
                            [net.train_op, net.summary_op,
                             net.gstep])  #,feed_dict={x:batch[0],y_:batch[1]})
                        writer.add_summary(summaries, global_step=step)
                except tf.errors.OutOfRangeError:
                    eval(net, sess, testsets, writer, test_init, test_accs,
                         set_active_output, task_labels)
            if stereo or kl or dist_merge:
                net.stroe_gauss(idx)
            if idx > 0 and dist_merge:
                best_dist_acc = 0.0
                best_dist_alpha = 0.0
                for alpha in tqdm(np.linspace(0, 1, 20)):
                    net.dist_merge(sess, alpha)
                    _avg_acc = eval(net, sess, testsets, writer, test_init,
                                    test_accs, set_active_output, task_labels)
                    if _avg_acc > best_dist_acc:
                        best_dist_acc = _avg_acc
                        best_dist_alpha = alpha
                net.dist_merge(sess, best_dist_alpha)
                print(best_dist_alpha)
                time.sleep(10)

            if imm or stereo:
                net.store_merge_params(idx)

            if kl:
                print('Computing Fisher ...')
                net.compute_fisher(trainset[idx][0], sess)
                if idx == len(trainset) - 1:
                    net.set_learned_dist(sess)
                    net.set_prior(sess)

                    for e in range(1):
                        print('KL Merging Epoch %d ...' % e)
                        sess.run(train_init[idx])
                        S = 0
                        try:
                            while S < 5000:
                                print('Step %d ...' % S, end='\r')
                                _ = sess.run(net.kl_train_op)
                                S += 1
                        except tf.errors.OutOfRangeError:
                            eval(net, sess, testsets, None, test_init,
                                 test_accs, set_active_output, task_labels)
                else:
                    net.store_fisher()
        if imm:
            best_imm_acc = 0.0
            best_imm_alpha = 0.0
            for alpha in tqdm(np.linspace(0, 1, 20)):
                net.imm_mean(sess, alpha)
                _avg_acc = eval(net, sess, testsets, writer, test_init,
                                test_accs, set_active_output, task_labels)
                if _avg_acc > best_imm_acc:
                    best_imm_acc = _avg_acc
                    best_imm_alpha = alpha
            net.imm_mean(sess, best_imm_alpha)
            print(best_imm_alpha)
            time.sleep(10)
        if stereo:
            net.store_gauss()
            best_stereo_n = 0.0
            best_stereo_acc = 0.0
            if dp:
                #for n in np.linspace(0.001,1 / len(trainset),20):
                for n in [0.0]:
                    net.restore_gauss()
                    net.em_stereo(n_component=len(trainset),
                                  dp=dp,
                                  thresh_hold=n)
                    stereo_acc = eval(net,
                                      sess,
                                      testsets,
                                      writer,
                                      test_init,
                                      test_accs,
                                      set_active_output,
                                      task_labels,
                                      stereo=True)
                    if stereo_acc > best_stereo_acc:
                        best_stereo_acc = stereo_acc
                        best_stereo_n = n
            #print(best_stereo_n)
            #time.sleep(10)
            else:
                #for n in range(1,len(trainset)+1):
                for n in [2]:
                    print('component is set to %d' % n)
                    time.sleep(10)
                    net.restore_gauss()
                    net.em_stereo(n_component=n, dp=dp)
                    stereo_acc = eval(net,
                                      sess,
                                      testsets,
                                      writer,
                                      test_init,
                                      test_accs,
                                      set_active_output,
                                      task_labels,
                                      stereo=True)
                    if stereo_acc > best_stereo_acc:
                        best_stereo_acc = stereo_acc
                        best_stereo_n = n
            print(best_stereo_n)
            time.sleep(10)
            eval(net,
                 sess,
                 testsets,
                 writer,
                 test_init,
                 test_accs,
                 set_active_output,
                 task_labels,
                 stereo=True)
        else:
            eval(net, sess, testsets, None, test_init, test_accs,
                 set_active_output, task_labels)
        writer.close()
Example #2
0
def train_permute(model,
                  sess,
                  num_epoch,
                  disp_freq,
                  trainset,
                  testsets,
                  train_init,
                  test_init,
                  lams=[0],
                  BATCH_SIZE=128,
                  sequential=False,
                  dist_merge=False,
                  imm=False,
                  st=False,
                  set_active_output=None,
                  kl=False,
                  imm_mode=False,
                  task_labels=None,
                  dp=False,
                  terminal_out=False,
                  _fisher_flag=True,
                  **method):
    def search_merge_best(method_name):
        best_acc = 0.0
        best_alpha = 0.0
        disp = False
        func = getattr(model, method_name)
        for alpha in tqdm(np.linspace(0, 1, 20),
                          ascii=True,
                          desc='{} Smooth Process'.format(method_name)):
            #for alpha in [1.0]:
            func(sess, alpha)
            avg_acc = eval(model,
                           sess,
                           num_task,
                           None,
                           test_init,
                           test_accs,
                           set_active_output,
                           task_labels,
                           record=False,
                           disp=False)
            print('alpha :{} Accuracy:{}'.format(alpha, avg_acc))
            if avg_acc > best_acc:
                best_acc = avg_acc
                best_alpha = alpha
        func(sess, best_alpha)
        eval(model,
             sess,
             num_task,
             None,
             test_init,
             test_accs,
             set_active_output,
             task_labels,
             record=True,
             disp=True)
        if not disp:
            print('{} best alpha is:{}, best accuracy is {}'.format(
                method_name, best_alpha, best_acc))
        np.savetxt('results/' + method_name + '_lam={}.csv'.format(lams[0]),
                   [p for p in zip([best_alpha], [best_acc])],
                   delimiter=', ',
                   fmt='%.4f')

    def search_st_best():
        disp = False
        best_component = 0
        best_thresh_hold = 0.0
        best_acc = 0.0
        model.back_up_params()
        for n_component in range(1, num_task):
            #for thresh_hold in np.linspace(0.1,0.45,3):
            for thresh_hold in [0.4]:
                #model.restore_params_from_backup()
                model.st_smooth(n_component, dp, thresh_hold)
                avg_acc = eval(model,
                               sess,
                               num_task,
                               None,
                               test_init,
                               test_accs,
                               set_active_output,
                               task_labels,
                               st=True,
                               record=False,
                               disp=False)
                if avg_acc > best_acc:
                    best_acc = avg_acc
                    best_component = n_component
                    best_thresh_hold = thresh_hold
        model.st_smooth(best_component, dp, best_thresh_hold)
        eval(model,
             sess,
             num_task,
             None,
             test_init,
             test_accs,
             set_active_output,
             task_labels,
             st=True,
             record=True,
             disp=True)
        if dp:
            filename = 'st'
        else:
            filename = 'em'
        np.savetxt(
            'results/{}_lam={}.csv'.format(filename, lams[0]),
            [p for p in zip([best_thresh_hold], [best_component], [best_acc])],
            delimiter=', ',
            fmt='%.4f')

    def search_kl_best():
        disp = False

        def kl_search(alpha):
            sess.run(train_init[0])
            model.restore_last_params(sess)
            model.set_alpha(sess, alpha)
            try:
                for _ in tqdm(range(5000),
                              ascii=True,
                              desc='KL Smooth Process'):
                    sess.run(train_op)
            except tf.errors.OutOfRangeError:
                pass
            avg_acc = eval(model,
                           sess,
                           num_task,
                           None,
                           test_init,
                           test_accs,
                           set_active_output,
                           task_labels,
                           record=False,
                           disp=False)
            return avg_acc

        model.set_learned_dist(sess)
        #op_name = ['kl','mode_kl']
        op_name = ['kl']
        for idx, train_op in enumerate(
            [model.kl_train_op, model.mode_kl_train_op]):

            best_acc = 0.0
            best_alpha = 0.0
            for alpha in tqdm(np.linspace(0, 1, 20)):
                #for alpha in [0.5]:
                avg_acc = kl_search(alpha)
                if avg_acc > best_acc:
                    best_acc = avg_acc
                    best_alpha = alpha
            kl_search(best_alpha)
            eval(model,
                 sess,
                 num_task,
                 None,
                 test_init,
                 test_accs,
                 set_active_output,
                 task_labels,
                 record=True,
                 disp=True)
            if not disp:
                print('{} best alpha is:{}, best accuracy is {}'.format(
                    train_op.name, best_alpha, best_acc))
            np.savetxt('results/{}_lam={}.csv'.format(op_name[idx], lams[0]),
                       [p for p in zip([best_alpha], [best_acc])],
                       delimiter=', ',
                       fmt='%.4f')

    _fisher_flag = _fisher_flag
    test_accs = {}
    test_accs['avg'] = []
    for t in range(len(testsets)):
        test_accs[t] = []
    print('Training start ...')
    merge_method = method.pop('merge_method', None)
    method_name = method.pop('method_name', 'Default')
    graph_path = './graph/split/'
    mkdir(graph_path)
    writer = tf.summary.FileWriter(graph_path, tf.get_default_graph())
    num_task = len(trainset)
    sess.run(model.lams.assign(lams[0]))
    for idx in range(num_task):
        if idx == 0:
            try:
                model.restore_first_params(sess, clean=True)
                print(' ****** Restoring ... ****** ')
                if not _fisher_flag:
                    model.compute_fisher(trainset[idx][0], sess)
                    model.store_fisher(idx)
                continue
            except KeyError:
                print('First Training Start ...')
        #Sequential Bayesian Inference
        if idx > 0 and sequential:
            model.set_prior(sess, idx - 1)

        #  Training Start
        for e in range(num_epoch):
            if set_active_output is not None:
                set_active_output(task_labels[idx])
            sess.run(train_init[idx])
            try:
                while True:
                    _, summaries, step = sess.run(
                        [model.train_op, model.summary_op, model.gstep])
                    writer.add_summary(summaries, global_step=step)
            except tf.errors.OutOfRangeError:
                avg_acc = eval(model, sess, num_task, writer, test_init,
                               test_accs, set_active_output, task_labels)

            if terminal_out:
                print('Training {}th task, Epoch: {}, Accuracy: {:.4f}'.format(
                    idx, e, avg_acc),
                      end='\r')
        model.store_params(idx)
        if (kl or imm_mode) and not _fisher_flag:
            model.compute_fisher(trainset[idx][0], sess)
            model.store_fisher(idx)
            _fisher_flag = True
        #  End of Train

    if merge_method is not None:
        for name in merge_method:
            search_merge_best(name)
    if kl:
        search_kl_best()
    if st:
        search_st_best()
    plt.savefig('./images/{}_l={}.png'.format(method_name, lams[0]))
Example #3
0
def common_train(model,
                 sess,
                 num_epoch,
                 disp_freq,
                 trainset,
                 testsets,
                 train_init,
                 test_init,
                 lams=[0],
                 BATCH_SIZE=128,
                 sequential=False,
                 terminal_out=False,
                 drop_out=False):
    model.initialize_default_params(sess)
    test_accs = {}
    test_accs['avg'] = []
    for t in range(len(testsets)):
        test_accs[t] = []
    print('Training start ...')
    graph_path = './graph/split/common'
    mkdir(graph_path)
    #writer = tf.summary.FileWriter(graph_path,tf.get_default_graph())
    writer = None
    num_task = len(trainset)
    sess.run(model.lams.assign(lams[0]))
    for idx in range(num_task):
        '''
        if idx == 0:
            try:
                model.restore_first_params(sess,clean=True)
                print(' ****** Restoring ... ****** ')
                continue
            except KeyError:
                print('First Training Start ...')
        '''
        #Sequential Bayesian Inference
        if idx > 0 and sequential:
            model.set_prior(sess, idx - 1)

        #  Training Start
        for e in range(num_epoch):
            sess.run(train_init[idx])
            try:
                while True:
                    _, summaries, step = sess.run([
                        model.apply_dropout(drop_out, idx), model.summary_op,
                        model.gstep
                    ])
                    #writer.add_summary(summaries,global_step = step)
            except tf.errors.OutOfRangeError:
                avg_acc = eval(model, sess, num_task, writer, test_init,
                               test_accs)

            if terminal_out:
                print('Training {}th task, Epoch: {}, Accuracy: {:.4f}'.format(
                    idx, e, avg_acc),
                      end='\r')
        model.store_params(idx)

    #np.savetxt('results/'+'common'+'_lam={}.csv'.format(lams[0]),[p for p in zip([best_alpha],[best_acc])],delimiter=', ', fmt='%.4f')

    plt.savefig('./images/{}_l={}.png'.format('common', lams[0]))
Example #4
0
def bayes_imm_kl_train(model,
                       sess,
                       num_epoch,
                       disp_freq,
                       trainset,
                       testsets,
                       train_init,
                       test_init,
                       lams=[0],
                       BATCH_SIZE=128,
                       sequential=False,
                       drop_out=False,
                       imm=False,
                       imm_mode=False,
                       terminal_out=False):
    model.initialize_default_params(sess)
    if imm and imm_mode:
        raise ValueError('only imm or imm_mode')
    test_accs = {}
    test_accs['avg'] = []
    for t in range(len(testsets)):
        test_accs[t] = []
    print('Training start ...')
    graph_path = './graph/split/imm'
    mkdir(graph_path)
    #writer = tf.summary.FileWriter(graph_path,tf.get_default_graph())
    writer = None
    num_task = len(trainset)
    sess.run(model.lams.assign(lams[0]))
    for idx in range(num_task):
        '''
        if idx == 0:
            try:
                model.restore_first_params(sess,clean=True)
                print(' ****** Restoring ... ****** ')
                if imm_mode:
                    model.compute_fisher(trainset[idx][0],sess)
                    model.store_fisher(idx)
                continue
            except KeyError:
                print('First Training Start ...')
        '''
        #Sequential Bayesian Inference
        if idx > 0 and sequential:
            model.set_prior(sess, idx - 1)

        #  Training Start
        for e in range(num_epoch):
            sess.run(train_init[idx])
            try:
                while True:
                    _, summaries, step = sess.run([
                        model.apply_dropout(drop_out, idx), model.summary_op,
                        model.gstep
                    ])
                    #writer.add_summary(summaries,global_step = step)
            except tf.errors.OutOfRangeError:
                avg_acc = eval(model, sess, num_task, writer, test_init,
                               test_accs)

            if terminal_out:
                print('Training {}th task, Epoch: {}, Accuracy: {:.4f}'.format(
                    idx, e, avg_acc),
                      end='\r')
        model.store_params(idx)
        if imm_mode:
            model.compute_fisher(trainset[idx][0], sess)
            model.store_fisher(idx)

    if imm:
        method_name = 'bayes_imm_mean_kl'
    elif imm_mode:
        method_name = 'bayes_imm_mode_kl'

    best_acc = 0.0
    best_alpha = 0.0
    disp = False
    func = getattr(model, method_name)
    model.back_up_params()
    for alpha in tqdm(np.linspace(0, 1, 20),
                      ascii=True,
                      desc='{} Smooth Process'.format(method_name)):
        #for alpha in [1.0]:
        model.restore_params_from_backup()
        func(sess, alpha)
        avg_acc = eval(model,
                       sess,
                       num_task,
                       None,
                       test_init,
                       test_accs,
                       record=False,
                       disp=False)
        print('alpha :{} Accuracy:{}'.format(alpha, avg_acc))
        if avg_acc > best_acc:
            best_acc = avg_acc
            best_alpha = alpha
    func(sess, best_alpha)
    eval(model,
         sess,
         num_task,
         None,
         test_init,
         test_accs,
         record=True,
         disp=True)
    if not disp:
        print('{} best alpha is:{}, best accuracy is {}'.format(
            method_name, best_alpha, best_acc))
    np.savetxt('results/' + method_name + '_lam={}.csv'.format(lams[0]),
               [p for p in zip([best_alpha], [best_acc])],
               delimiter=', ',
               fmt='%.4f')

    plt.savefig('./images/{}_l={}.png'.format(method_name, lams[0]))
Example #5
0
def em_train(model,
             sess,
             num_epoch,
             disp_freq,
             trainset,
             testsets,
             train_init,
             test_init,
             lams=[0],
             num_component=2,
             num_thresh_hold=0.4,
             drop_out=False,
             BATCH_SIZE=128,
             sequential=False,
             terminal_out=False):
    model.initialize_default_params(sess)
    dp = False
    test_accs = {}
    test_accs['avg'] = []
    for t in range(len(testsets)):
        test_accs[t] = []
    print('Training start ...')
    graph_path = './graph/split/em_smooth'
    mkdir(graph_path)
    #writer = tf.summary.FileWriter(graph_path,tf.get_default_graph())
    writer = None
    num_task = len(trainset)
    sess.run(model.lams.assign(lams[0]))
    for idx in range(num_task):
        '''
        if idx == 0:
            try:
                model.restore_first_params(sess,clean=True)
                print(' ****** Restoring ... ****** ')
                continue
            except KeyError:
                print('First Training Start ...')
        '''
        #Sequential Bayesian Inference
        if idx > 0 and sequential:
            model.set_prior(sess, idx - 1)

        #  Training Start
        for e in range(num_epoch):
            #print('Training Epoch {}/{} ...'.format(e,num_epoch))
            sess.run(train_init[idx])
            try:
                while True:
                    #_, summaries,step = sess.run([model.train_op,model.summary_op,model.gstep])
                    _, step = sess.run(
                        [model.apply_dropout(drop_out, idx), model.gstep])
                    #writer.add_summary(summaries,global_step = step)
            except tf.errors.OutOfRangeError:
                #print('End Epoch {}/{} ...'.format(e,num_epoch))
                avg_acc = eval(model, sess, num_task, writer, test_init,
                               test_accs)

            if terminal_out:
                print('Training {}th task, Epoch: {}, Accuracy: {:.4f}'.format(
                    idx, e, avg_acc),
                      end='\r')
        model.store_params(idx)
        #  End of Train

    disp = False
    best_component = 0
    best_thresh_hold = 0.0
    best_acc = 0.0
    model.back_up_params()
    #for n_component in range(1,num_task+1):
    for n_component in [num_component]:
        #for thresh_hold in np.linspace(0.1,0.45,3):
        for thresh_hold in [num_thresh_hold]:
            #model.restore_params_from_backup()
            model.st_smooth(n_component, dp=dp, thresh_hold=thresh_hold)
            #param_idx = eval(model,sess,num_task,None,testsets,test_accs,record=False,disp=False)
            avg_acc = eval(model,
                           sess,
                           num_task,
                           None,
                           test_init,
                           test_accs,
                           record=False,
                           disp=False)
            if avg_acc > best_acc:
                best_acc = avg_acc
                best_component = n_component
                best_thresh_hold = thresh_hold
    #model.st_smooth(best_component,dp,best_thresh_hold)
    param_idx, avg_uncertainty = em_eval(model,
                                         sess,
                                         num_task,
                                         None,
                                         testsets,
                                         test_accs,
                                         record=False,
                                         disp=False)
    eval(model,
         sess,
         num_task,
         None,
         test_init,
         test_accs,
         params_idx=param_idx,
         record=True,
         disp=True)

    filename = 'em'
    np.savetxt(
        'results/{}_lam={}.csv'.format(filename, lams[0]),
        [p for p in zip([best_thresh_hold], [best_component], [best_acc])],
        delimiter=', ',
        fmt='%.4f')

    plt.savefig('./images/{}_l={}.png'.format(filename, lams[0]))
Example #6
0
def train_permute(net,
                  sess,
                  num_epoch,
                  disp_freq,
                  trainset,
                  testsets,
                  x,
                  y_,
                  lams=[0],
                  BATCH_SIZE=128,
                  sequential=False):
    #Initialize lam for every test
    iterator = initialize_model(net, trainset)
    for l in range(len(lams)):
        sess.run(tf.global_variables_initializer())
        sess.run(net.lams.assign(lams[l]))
        train_path = './graph/permute/lam={}/train/'.format(l)
        test_path = './graph/permute/lam={}/test/'.format(l)
        mkdir(train_path)
        mkdir(test_path)
        writer = tf.summary.FileWriter(train_path, tf.get_default_graph())

        test_accs = {}
        test_accs['avg'] = []
        for t in range(len(testsets)):
            test_accs[t] = []
        print('Training Start ... ')
        for idx in range(len(trainset)):
            train_init = make_data_initializer(trainset[idx], iterator)
            for e in range(num_epoch):
                sess.run(train_init)
                try:
                    while True:
                        #batch = sess.run([X_train,y_train])
                        _, summaries, step = sess.run(
                            [net.train_op, net.summary_op,
                             net.gstep])  #,feed_dict={x:batch[0],y_:batch[1]})
                        writer.add_summary(summaries, global_step=step)

                    #if step % disp_freq == 0:
                except tf.errors.OutOfRangeError:
                    avg_acc_all = 0.0
                    for test_idx in range(len(testsets)):
                        #plt.subplot(l+1,len(testsets)+1,test_idx+1)
                        test_init = make_data_initializer(
                            testsets[test_idx], iterator)
                        sess.run(test_init)
                        avg_acc = 0.0
                        for _ in range(10):
                            #batch = sess.run([X_test,y_test])
                            acc, summaries, step = sess.run([
                                net.accuracy, net.summary_op, net.gstep
                            ])  #,feed_dict={x:batch[0],y_:batch[1]})
                            avg_acc += acc
                            writer.add_summary(summaries, global_step=step)
                        test_accs[test_idx].append(avg_acc / 10)
                        avg_acc_all += avg_acc / 10
                        plot_accs((len(testsets) + 1) // 3 + 1, 3,
                                  test_idx + 1, test_accs[test_idx], step,
                                  disp_freq)
                        #plt.plot(range(1,step+2,disp_freq),test_accs[test_idx])
                        #plt.ylim(0,1)
                        #plt.title('Task %d'%test_idx)
                        #display.display(plt.gcf())
                        #display.clear_output(wait=True)
                        #plt.gcf().set_size_inches(len(testsets)*5, 3.5)
                    test_accs['avg'].append(avg_acc_all / len(testsets))
                    plot_accs((len(testsets) + 1) // 3 + 1,
                              3,
                              len(testsets) + 1,
                              test_accs['avg'],
                              step,
                              disp_freq,
                              last=True)
                #except tf.errors.OutOfRangeError:
                #   pass
            if sequential:
                net.store()
                net.set_prior(sess)