def __init__( self, block_size = 12, # 1 or two parameters for block size block_overlap = 11, # 1 or two parameters for block overlap number_of_dct_coefficients = 45, normalize_blocks = True, normalize_dcts = True, auto_reduce_coefficients = False ): # call base class constructor Extractor.__init__( self, block_size = block_size, block_overlap = block_overlap, number_of_dct_coefficients = number_of_dct_coefficients, normalize_blocks = normalize_blocks, normalize_dcts = normalize_dcts, auto_reduce_coefficients = auto_reduce_coefficients ) # block parameters block_size = block_size if isinstance(block_size, (tuple, list)) else (block_size, block_size) block_overlap = block_overlap if isinstance(block_overlap, (tuple, list)) else (block_overlap, block_overlap) if block_size[0] < block_overlap[0] or block_size[1] < block_overlap[1]: raise ValueError("The overlap '%s' is bigger than the block size '%s'. This won't work. Please check your setup!"%(block_overlap, block_size)) if block_size[0] * block_size[1] <= number_of_dct_coefficients: if auto_reduce_coefficients: number_of_dct_coefficients = block_size[0] * block_size[1] - 1 else: raise ValueError("You selected more coefficients %d than your blocks have %d. This won't work. Please check your setup!"%(number_of_dct_coefficients, block_size[0] * block_size[1])) self.dct_features = bob.ip.base.DCTFeatures(number_of_dct_coefficients, block_size, block_overlap, normalize_blocks, normalize_dcts)
def __init__( self, win_length_ms = 20, win_shift_ms = 10, n_filters = 24 , dct_norm = False, f_min = 0.0, f_max = 4000, delta_win = 2, mel_scale = True, with_energy = True, with_delta = True, with_delta_delta = True, n_ceps = 19, # 0-->18 pre_emphasis_coef = 0.95, features_mask = numpy.arange(0,60), # Normalization normalize_flag = True, **kwargs ): # call base class constructor with its set of parameters Extractor.__init__( self, win_length_ms = win_length_ms, win_shift_ms = win_shift_ms, n_filters = n_filters, dct_norm = dct_norm, f_min = f_min, f_max = f_max, delta_win = delta_win, mel_scale = mel_scale, with_energy = with_energy, with_delta = with_delta, with_delta_delta = with_delta_delta, n_ceps = n_ceps, pre_emphasis_coef = pre_emphasis_coef, features_mask = features_mask, normalize_flag = normalize_flag, ) # copy parameters self.win_length_ms = win_length_ms self.win_shift_ms = win_shift_ms self.n_filters = n_filters self.dct_norm = dct_norm self.f_min = f_min self.f_max = f_max self.delta_win = delta_win self.mel_scale = mel_scale self.with_energy = with_energy self.with_delta = with_delta self.with_delta_delta = with_delta_delta self.n_ceps = n_ceps self.pre_emphasis_coef = pre_emphasis_coef self.features_mask = features_mask self.normalize_flag = normalize_flag
def __init__( self, win_length_ms=20, win_shift_ms=10, n_filters=24, dct_norm=False, f_min=0.0, f_max=4000, delta_win=2, mel_scale=True, with_energy=True, with_delta=True, with_delta_delta=True, n_ceps=19, # 0-->18 pre_emphasis_coef=0.95, features_mask=numpy.arange(0, 60), # Normalization normalize_flag=True, **kwargs): # call base class constructor with its set of parameters Extractor.__init__( self, win_length_ms=win_length_ms, win_shift_ms=win_shift_ms, n_filters=n_filters, dct_norm=dct_norm, f_min=f_min, f_max=f_max, delta_win=delta_win, mel_scale=mel_scale, with_energy=with_energy, with_delta=with_delta, with_delta_delta=with_delta_delta, n_ceps=n_ceps, pre_emphasis_coef=pre_emphasis_coef, features_mask=features_mask, normalize_flag=normalize_flag, ) # copy parameters self.win_length_ms = win_length_ms self.win_shift_ms = win_shift_ms self.n_filters = n_filters self.dct_norm = dct_norm self.f_min = f_min self.f_max = f_max self.delta_win = delta_win self.mel_scale = mel_scale self.with_energy = with_energy self.with_delta = with_delta self.with_delta_delta = with_delta_delta self.n_ceps = n_ceps self.pre_emphasis_coef = pre_emphasis_coef self.features_mask = features_mask self.normalize_flag = normalize_flag
def __init__(self, features_mask=numpy.arange(0, 60), normalize_flag=True, **kwargs): # call base class constructor with its set of parameters Extractor.__init__( self, features_mask=features_mask, normalize_flag=normalize_flag, ) # copy parameters self.features_mask = features_mask self.normalize_flag = normalize_flag
def __init__( self, features_mask = numpy.arange(0,60), normalize_flag = True, **kwargs ): # call base class constructor with its set of parameters Extractor.__init__( self, features_mask = features_mask, normalize_flag = normalize_flag, ) # copy parameters self.features_mask = features_mask self.normalize_flag = normalize_flag
def __init__( self, split_training_data_by_client=False, features_mask=numpy.zeros(90), # mask of which features to read **kwargs): # call base class constructor with its set of parameters Preprocessor.__init__(self, read_original_data=self.read_matlab_files, **kwargs) Extractor.__init__( self, requires_training=False, split_training_data_by_client=split_training_data_by_client, **kwargs) self.features_mask = features_mask
def __init__( self, block_size=12, # 1 or two parameters for block size block_overlap=11, # 1 or two parameters for block overlap number_of_dct_coefficients=45, normalize_blocks=True, normalize_dcts=True, auto_reduce_coefficients=False): # call base class constructor Extractor.__init__( self, block_size=block_size, block_overlap=block_overlap, number_of_dct_coefficients=number_of_dct_coefficients, normalize_blocks=normalize_blocks, normalize_dcts=normalize_dcts, auto_reduce_coefficients=auto_reduce_coefficients) # block parameters block_size = block_size if isinstance(block_size, (tuple, list)) else (block_size, block_size) block_overlap = block_overlap if isinstance( block_overlap, (tuple, list)) else (block_overlap, block_overlap) if block_size[0] < block_overlap[0] or block_size[1] < block_overlap[1]: raise ValueError( "The overlap '%s' is bigger than the block size '%s'. This won't work. Please check your setup!" % (block_overlap, block_size)) if block_size[0] * block_size[1] <= number_of_dct_coefficients: if auto_reduce_coefficients: number_of_dct_coefficients = block_size[0] * block_size[1] - 1 else: raise ValueError( "You selected more coefficients %d than your blocks have %d. This won't work. Please check your setup!" % (number_of_dct_coefficients, block_size[0] * block_size[1])) self.dct_features = bob.ip.base.DCTFeatures(number_of_dct_coefficients, block_size, block_overlap, normalize_blocks, normalize_dcts)
def __init__( self, # Gabor parameters gabor_directions = 8, gabor_scales = 5, gabor_sigma = 2. * math.pi, gabor_maximum_frequency = math.pi / 2., gabor_frequency_step = math.sqrt(.5), gabor_power_of_k = 0, gabor_dc_free = True, # what kind of information to extract normalize_gabor_jets = True, # setup of the aligned grid eyes = None, # if set, the grid setup will be aligned to the eye positions {'leye' : LEFT_EYE_POS, 'reye' : RIGHT_EYE_POS}, nodes_between_eyes = 4, nodes_along_eyes = 2, nodes_above_eyes = 3, nodes_below_eyes = 7, # setup of static grid node_distance = None, # one or two integral values first_node = None, # one or two integral values, or None -> automatically determined ): # call base class constructor Extractor.__init__( self, gabor_directions = gabor_directions, gabor_scales = gabor_scales, gabor_sigma = gabor_sigma, gabor_maximum_frequency = gabor_maximum_frequency, gabor_frequency_step = gabor_frequency_step, gabor_power_of_k = gabor_power_of_k, gabor_dc_free = gabor_dc_free, normalize_gabor_jets = normalize_gabor_jets, eyes = eyes, nodes_between_eyes = nodes_between_eyes, nodes_along_eyes = nodes_along_eyes, nodes_above_eyes = nodes_above_eyes, nodes_below_eyes = nodes_below_eyes, node_distance = node_distance, first_node = first_node ) # create Gabor wavelet transform class self.gwt = bob.ip.gabor.Transform( number_of_scales = gabor_scales, number_of_directions = gabor_directions, sigma = gabor_sigma, k_max = gabor_maximum_frequency, k_fac = gabor_frequency_step, power_of_k = gabor_power_of_k, dc_free = gabor_dc_free ) # create graph extractor if eyes is not None: self._aligned_graph = bob.ip.gabor.Graph( righteye = [int(e) for e in eyes['reye']], lefteye = [int(e) for e in eyes['leye']], between = int(nodes_between_eyes), along = int(nodes_along_eyes), above = int(nodes_above_eyes), below = int(nodes_below_eyes) ) else: if node_distance is None: raise ValueError("Please specify either 'eyes' or the grid parameters 'node_distance' (and 'first_node')!") self._aligned_graph = None self._last_image_resolution = None self.first_node = first_node self.node_distance = node_distance if isinstance(self.node_distance, (int, float)): self.node_distance = (int(self.node_distance), int(self.node_distance)) self.normalize_jets = normalize_gabor_jets self.trafo_image = None
def __init__( self, # Block setup block_size, # one or two parameters for block size block_overlap = 0, # one or two parameters for block overlap # Gabor parameters gabor_directions = 8, gabor_scales = 5, gabor_sigma = 2. * math.pi, gabor_maximum_frequency = math.pi / 2., gabor_frequency_step = math.sqrt(.5), gabor_power_of_k = 0, gabor_dc_free = True, use_gabor_phases = False, # LBP parameters lbp_radius = 2, lbp_neighbor_count = 8, lbp_uniform = True, lbp_circular = True, lbp_rotation_invariant = False, lbp_compare_to_average = False, lbp_add_average = False, # histogram options sparse_histogram = False, split_histogram = None ): # call base class constructor Extractor.__init__( self, block_size = block_size, block_overlap = block_overlap, gabor_directions = gabor_directions, gabor_scales = gabor_scales, gabor_sigma = gabor_sigma, gabor_maximum_frequency = gabor_maximum_frequency, gabor_frequency_step = gabor_frequency_step, gabor_power_of_k = gabor_power_of_k, gabor_dc_free = gabor_dc_free, use_gabor_phases = use_gabor_phases, lbp_radius = lbp_radius, lbp_neighbor_count = lbp_neighbor_count, lbp_uniform = lbp_uniform, lbp_circular = lbp_circular, lbp_rotation_invariant = lbp_rotation_invariant, lbp_compare_to_average = lbp_compare_to_average, lbp_add_average = lbp_add_average, sparse_histogram = sparse_histogram, split_histogram = split_histogram ) # block parameters self.block_size = block_size if isinstance(block_size, (tuple, list)) else (block_size, block_size) self.block_overlap = block_overlap if isinstance(block_overlap, (tuple, list)) else (block_overlap, block_overlap) if self.block_size[0] < self.block_overlap[0] or self.block_size[1] < self.block_overlap[1]: raise ValueError("The overlap is bigger than the block size. This won't work. Please check your setup!") # Gabor wavelet transform class self.gwt = bob.ip.gabor.Transform( number_of_scales = gabor_scales, number_of_directions = gabor_directions, sigma = gabor_sigma, k_max = gabor_maximum_frequency, k_fac = gabor_frequency_step, power_of_k = gabor_power_of_k, dc_free = gabor_dc_free ) self.trafo_image = None self.use_phases = use_gabor_phases self.lbp = bob.ip.base.LBP( neighbors = lbp_neighbor_count, radius = float(lbp_radius), circular = lbp_circular, to_average = lbp_compare_to_average, add_average_bit = lbp_add_average, uniform = lbp_uniform, rotation_invariant = lbp_rotation_invariant, border_handling = 'wrap' ) self.split = split_histogram self.sparse = sparse_histogram if self.sparse and self.split: raise ValueError("Sparse histograms cannot be split! Check your setup!")
def __init__( self, win_length_ms=20., # 20 ms win_shift_ms=10., # 10 ms n_filters=40, f_min=0.0, # 0 Hz f_max=8000, # 8 KHz - this is an important value. Normally it should be half of the sampling frequency pre_emphasis_coef=1.0, mel_scale=True, rect_filter=False, inverse_filter=False, delta_win=2, n_ceps=19, # 0-->18, dct_norm=False, ssfc_features=False, scfc_features=False, scmc_features=False, with_delta=True, with_delta_delta=True, with_energy=False, normalize_spectrum=False, keep_only_deltas=True, log_filter=True, energy_filter=False, vad_filter="no_filter", # we do apply any trim filter by default normalize_feature_vector=False, **kwargs): # call base class constructor with its set of parameters Extractor.__init__(self, requires_training=False, split_training_data_by_client=False, **kwargs) # copy parameters self.win_length_ms = win_length_ms self.win_shift_ms = win_shift_ms self.n_filters = n_filters self.f_min = f_min self.f_max = f_max self.pre_emphasis_coef = pre_emphasis_coef self.mel_scale = mel_scale self.rect_filter = rect_filter self.inverse_filter = inverse_filter self.delta_win = delta_win self.n_ceps = n_ceps self.dct_norm = dct_norm self.ssfc_features = ssfc_features self.scfc_features = scfc_features self.scmc_features = scmc_features self.with_delta = with_delta self.with_delta_delta = with_delta_delta self.with_energy = with_energy self.normalize_spectrum = normalize_spectrum self.keep_only_deltas = keep_only_deltas self.log_filter = log_filter self.energy_filter = energy_filter self.vad_filter = vad_filter self.normalize_feature_vector = normalize_feature_vector # compute the size of the feature vector self.features_len = self.n_ceps if self.with_delta: self.features_len += self.n_ceps if self.with_delta_delta: self.features_len += self.n_ceps
def __init__(self, subspace_dimension): # We have to register that this function will need a training step Extractor.__init__(self, requires_training = True, subspace_dimension = subspace_dimension) self.subspace_dimension = subspace_dimension
def __init__(self, **kwargs): Extractor.__init__(self, requires_training=True) self.model = False
def __init__( self, win_length_ms=20., # 20 ms win_shift_ms=10., # 10 ms n_filters=40, f_min=0.0, # 0 Hz f_max=8000, # 8 KHz - this is an important value. Normally it should be half of the sampling frequency pre_emphasis_coef=1.0, mel_scale=False, rect_filter=False, inverse_filter=False, delta_win=2, n_ceps=19, # 0-->18, dct_norm=False, d= 1, p= 3, k= 7, with_delta=True, with_delta_delta=False, with_energy=False, normalize_spectrum=False, keep_only_deltas=True, log_filter=True, energy_filter=False, vad_filter="no_filter", # we do apply any trim filter by default normalize_feature_vector = False, **kwargs ): # call base class constructor with its set of parameters Extractor.__init__( self, requires_training=False, split_training_data_by_client=False, **kwargs ) # copy parameters self.win_length_ms = win_length_ms self.win_shift_ms = win_shift_ms self.n_filters = n_filters self.f_min = f_min self.f_max = f_max self.pre_emphasis_coef = pre_emphasis_coef self.mel_scale = mel_scale self.rect_filter = rect_filter self.inverse_filter = inverse_filter self.delta_win = delta_win self.n_ceps = n_ceps self.dct_norm = dct_norm self.d = d self.p = p self.k = k self.with_delta = with_delta self.with_delta_delta = with_delta_delta self.with_energy = with_energy self.normalize_spectrum = normalize_spectrum self.keep_only_deltas = keep_only_deltas self.log_filter = log_filter self.energy_filter = energy_filter self.vad_filter = vad_filter self.normalize_feature_vector = normalize_feature_vector # compute the size of the feature vector self.features_len = self.n_ceps if self.with_delta: self.features_len += self.n_ceps if self.with_delta_delta: self.features_len += self.n_ceps def normalize_features(self, features): mean = numpy.mean(features, axis=0) std = numpy.std(features, axis=0) return numpy.divide(features-mean, std) def compute_ceps(self, rate, data): ceps = bob.ap.Ceps(rate, self.win_length_ms, self.win_shift_ms, self.n_filters, self.n_ceps, self.f_min, self.f_max, self.delta_win, self.pre_emphasis_coef) ceps.dct_norm = self.dct_norm ceps.mel_scale = self.mel_scale ceps.rect_filter = self.rect_filter ceps.inverse_filter = self.inverse_filter ceps.with_energy = self.with_energy ceps.with_delta = self.with_delta ceps.with_delta_delta = self.with_delta_delta ceps.normalize_spectrum = self.normalize_spectrum ceps.log_filter = self.log_filter ceps.energy_filter = self.energy_filter cepstral_features = ceps(data) if self.keep_only_deltas: cepstral_features = cepstral_features[:, self.n_ceps:] return cepstral_features def shifted_delta_cepstral(cep, d, p, k): y = numpy.r_[numpy.resize(cep[0, :], (d, cep.shape[1])), cep, numpy.resize(cep[-1, :], (k * 3 + d, cep.shape[1]))] delta = self.with_delta sdc = numpy.empty((cep.shape[0], cep.shape[1] * k)) idx = numpy.zeros(delta.shape[0], dtype='bool') for ii in range(k): idx[d + ii * p] = True for ff in range(len(cep)): sdc[ff, :] = delta[idx, :].reshape(1, -1) idx = numpy.roll(idx, 1) return numpy.hstack((cep, sdc)) def _call_(self, input_data): ceps = self._call_(input_data) return shifted_delta_cepstral(ceps,d,p,k)
def __init__(self, subspace_dimension): # We have to register that this function will need a training step Extractor.__init__(self, requires_training=True, subspace_dimension=subspace_dimension) self.subspace_dimension = subspace_dimension
def __init__( self, # Block setup block_size, # one or two parameters for block size block_overlap=0, # one or two parameters for block overlap # Gabor parameters gabor_directions=8, gabor_scales=5, gabor_sigma=2. * math.pi, gabor_maximum_frequency=math.pi / 2., gabor_frequency_step=math.sqrt(.5), gabor_power_of_k=0, gabor_dc_free=True, use_gabor_phases=False, # LBP parameters lbp_radius=2, lbp_neighbor_count=8, lbp_uniform=True, lbp_circular=True, lbp_rotation_invariant=False, lbp_compare_to_average=False, lbp_add_average=False, # histogram options sparse_histogram=False, split_histogram=None): # call base class constructor Extractor.__init__(self, block_size=block_size, block_overlap=block_overlap, gabor_directions=gabor_directions, gabor_scales=gabor_scales, gabor_sigma=gabor_sigma, gabor_maximum_frequency=gabor_maximum_frequency, gabor_frequency_step=gabor_frequency_step, gabor_power_of_k=gabor_power_of_k, gabor_dc_free=gabor_dc_free, use_gabor_phases=use_gabor_phases, lbp_radius=lbp_radius, lbp_neighbor_count=lbp_neighbor_count, lbp_uniform=lbp_uniform, lbp_circular=lbp_circular, lbp_rotation_invariant=lbp_rotation_invariant, lbp_compare_to_average=lbp_compare_to_average, lbp_add_average=lbp_add_average, sparse_histogram=sparse_histogram, split_histogram=split_histogram) # block parameters self.block_size = block_size if isinstance(block_size, (tuple, list)) else (block_size, block_size) self.block_overlap = block_overlap if isinstance( block_overlap, (tuple, list)) else (block_overlap, block_overlap) if self.block_size[0] < self.block_overlap[0] or self.block_size[ 1] < self.block_overlap[1]: raise ValueError( "The overlap is bigger than the block size. This won't work. Please check your setup!" ) # Gabor wavelet transform class self.gwt = bob.ip.gabor.Transform( number_of_scales=gabor_scales, number_of_directions=gabor_directions, sigma=gabor_sigma, k_max=gabor_maximum_frequency, k_fac=gabor_frequency_step, power_of_k=gabor_power_of_k, dc_free=gabor_dc_free) self.trafo_image = None self.use_phases = use_gabor_phases self.lbp = bob.ip.base.LBP(neighbors=lbp_neighbor_count, radius=float(lbp_radius), circular=lbp_circular, to_average=lbp_compare_to_average, add_average_bit=lbp_add_average, uniform=lbp_uniform, rotation_invariant=lbp_rotation_invariant, border_handling='wrap') self.split = split_histogram self.sparse = sparse_histogram if self.sparse and self.split: raise ValueError( "Sparse histograms cannot be split! Check your setup!")
def __init__( self, win_length_ms=20., # 20 ms win_shift_ms=10., # 10 ms n_filters=40, f_min=0.0, # 0 Hz f_max=8000, # 8 KHz - this is an important value. Normally it should be half of the sampling frequency pre_emphasis_coef=1.0, mel_scale=True, rect_filter=False, inverse_filter=False, delta_win=2, n_ceps=19, # 0-->18, dct_norm=False, ssfc_features=False, scfc_features=False, scmc_features=False, with_delta=True, with_delta_delta=True, with_energy=False, normalize_spectrum=False, keep_only_deltas=True, log_filter=True, energy_filter=False, vad_filter="no_filter", # we do apply any trim filter by default normalize_feature_vector = False, **kwargs ): # call base class constructor with its set of parameters Extractor.__init__( self, requires_training=False, split_training_data_by_client=False, **kwargs ) # copy parameters self.win_length_ms = win_length_ms self.win_shift_ms = win_shift_ms self.n_filters = n_filters self.f_min = f_min self.f_max = f_max self.pre_emphasis_coef = pre_emphasis_coef self.mel_scale = mel_scale self.rect_filter = rect_filter self.inverse_filter = inverse_filter self.delta_win = delta_win self.n_ceps = n_ceps self.dct_norm = dct_norm self.ssfc_features = ssfc_features self.scfc_features = scfc_features self.scmc_features = scmc_features self.with_delta = with_delta self.with_delta_delta = with_delta_delta self.with_energy = with_energy self.normalize_spectrum = normalize_spectrum self.keep_only_deltas = keep_only_deltas self.log_filter = log_filter self.energy_filter = energy_filter self.vad_filter = vad_filter self.normalize_feature_vector = normalize_feature_vector # compute the size of the feature vector self.features_len = self.n_ceps if self.with_delta: self.features_len += self.n_ceps if self.with_delta_delta: self.features_len += self.n_ceps