Example #1
0
def test_JFATrainer_updateYandV():
    # test the JFATrainer for updating Y and V

    v_ref = numpy.array([
        0.7228, 0.7892, 0.6475, 0.6080, 0.8631, 0.8416, 1.6512, 1.6068, 0.0500,
        0.0101, 0.4325, 0.6719
    ]).reshape((6, 2))

    y1 = numpy.array([0., 0.])
    y2 = numpy.array([0., 0.])
    y3 = numpy.array([0.9630, 1.3868])
    y4 = numpy.array([0.0426, -0.3721])
    y = [y1, y2]

    # call the updateY function
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR
    m = JFABase(ubm, 2, 2)
    t = JFATrainer()
    t.initialize(m, TRAINING_STATS)
    m.u = M_u
    m.v = M_v
    m.d = M_d
    t.__X__ = M_x
    t.__Y__ = y
    t.__Z__ = M_z
    t.e_step_v(m, TRAINING_STATS)
    t.m_step_v(m, TRAINING_STATS)

    # Expected results(JFA cookbook, matlab)
    assert equals(t.__Y__[0], y3, 2e-4)
    assert equals(t.__Y__[1], y4, 2e-4)
    assert equals(m.v, v_ref, 2e-4)
Example #2
0
def test_JFATrainInitialize():
    # Check that the initialization is consistent and using the rng (cf. issue #118)

    eps = 1e-10

    # UBM GMM
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR

    ## JFA
    jb = JFABase(ubm, 2, 2)
    # first round
    rng = bob.core.random.mt19937(0)
    jt = JFATrainer()
    #jt.rng = rng
    jt.initialize(jb, TRAINING_STATS, rng)
    u1 = jb.u
    v1 = jb.v
    d1 = jb.d

    # second round
    rng = bob.core.random.mt19937(0)
    jt.initialize(jb, TRAINING_STATS, rng)
    u2 = jb.u
    v2 = jb.v
    d2 = jb.d

    assert numpy.allclose(u1, u2, eps)
    assert numpy.allclose(v1, v2, eps)
    assert numpy.allclose(d1, d2, eps)
Example #3
0
def test_ISVTrainInitialize():

    # Check that the initialization is consistent and using the rng (cf. issue #118)
    eps = 1e-10

    # UBM GMM
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR

    ## ISV
    ib = ISVBase(ubm, 2)
    # first round
    rng = bob.core.random.mt19937(0)
    it = ISVTrainer(10)
    #it.rng = rng
    it.initialize(ib, TRAINING_STATS, rng)
    u1 = ib.u
    d1 = ib.d

    # second round
    rng = bob.core.random.mt19937(0)
    #it.rng = rng
    it.initialize(ib, TRAINING_STATS, rng)
    u2 = ib.u
    d2 = ib.d

    assert numpy.allclose(u1, u2, eps)
    assert numpy.allclose(d1, d2, eps)
Example #4
0
def test_JFATrainer_updateXandU():
    # test the JFATrainer for updating X and U

    u_ref = numpy.array([
        0.6729, 0.3408, 0.0544, 1.0653, 0.5399, 1.3035, 2.4995, 0.4385, 0.1292,
        -0.0576, 1.1962, 0.0117
    ]).reshape((6, 2))

    x1 = numpy.array([0., 0., 0., 0.]).reshape((2, 2))
    x2 = numpy.array([0., 0., 0., 0.]).reshape((2, 2))
    x3 = numpy.array([0.2143, 1.8275, 3.1979, 0.1227]).reshape((2, 2))
    x4 = numpy.array([-1.3861, 0.2359, 5.3326, -0.7914]).reshape((2, 2))
    x = [x1, x2]

    # call the updateX function
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR
    m = JFABase(ubm, 2, 2)
    t = JFATrainer()
    t.initialize(m, TRAINING_STATS)
    m.u = M_u
    m.v = M_v
    m.d = M_d
    t.__X__ = x
    t.__Y__ = M_y
    t.__Z__ = M_z
    t.e_step_u(m, TRAINING_STATS)
    t.m_step_u(m, TRAINING_STATS)

    # Expected results(JFA cookbook, matlab)
    assert equals(t.__X__[0], x3, 2e-4)
    assert equals(t.__X__[1], x4, 2e-4)
    assert equals(m.u, u_ref, 2e-4)
Example #5
0
def test_JFATrainer_updateZandD():
    # test the JFATrainer for updating Z and D

    d_ref = numpy.array([0.3110, 1.0138, 0.8297, 1.0382, 0.0095, 0.6320])

    z1 = numpy.array([0., 0., 0., 0., 0., 0.])
    z2 = numpy.array([0., 0., 0., 0., 0., 0.])
    z3_ref = numpy.array([0.3256, 1.8633, 0.6480, 0.8085, -0.0432, 0.2885])
    z4_ref = numpy.array([-0.3324, -0.1474, -0.4404, -0.4529, 0.0484, -0.5848])
    z = [z1, z2]

    # call the updateZ function
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR
    m = JFABase(ubm, 2, 2)
    t = JFATrainer()
    t.initialize(m, TRAINING_STATS)
    m.u = M_u
    m.v = M_v
    m.d = M_d
    t.__X__ = M_x
    t.__Y__ = M_y
    t.__Z__ = z
    t.e_step_d(m, TRAINING_STATS)
    t.m_step_d(m, TRAINING_STATS)

    # Expected results(JFA cookbook, matlab)
    assert equals(t.__Z__[0], z3_ref, 2e-4)
    assert equals(t.__Z__[1], z4_ref, 2e-4)
    assert equals(m.d, d_ref, 2e-4)
Example #6
0
def test_ISVTrainInitialize():

  # Check that the initialization is consistent and using the rng (cf. issue #118)
  eps = 1e-10

  # UBM GMM
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR

  ## ISV
  ib = ISVBase(ubm, 2)
  # first round
  rng = bob.core.random.mt19937(0)
  it = ISVTrainer(10)
  #it.rng = rng
  it.initialize(ib, TRAINING_STATS, rng)
  u1 = ib.u
  d1 = ib.d

  # second round
  rng = bob.core.random.mt19937(0)
  #it.rng = rng
  it.initialize(ib, TRAINING_STATS, rng)
  u2 = ib.u
  d2 = ib.d

  assert numpy.allclose(u1, u2, eps)
  assert numpy.allclose(d1, d2, eps)
Example #7
0
def test_JFATrainer_updateYandV():
  # test the JFATrainer for updating Y and V

  v_ref = numpy.array( [0.7228, 0.7892, 0.6475, 0.6080, 0.8631, 0.8416,
    1.6512, 1.6068, 0.0500, 0.0101, 0.4325, 0.6719]).reshape((6,2))

  y1 = numpy.array([0., 0.])
  y2 = numpy.array([0., 0.])
  y3 = numpy.array([0.9630, 1.3868])
  y4 = numpy.array([0.0426, -0.3721])
  y=[y1, y2]

  # call the updateY function
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR
  m = JFABase(ubm,2,2)
  t = JFATrainer()
  t.initialize(m, TRAINING_STATS)
  m.u = M_u
  m.v = M_v
  m.d = M_d
  t.__X__ = M_x
  t.__Y__ = y
  t.__Z__ = M_z
  t.e_step_v(m, TRAINING_STATS)
  t.m_step_v(m, TRAINING_STATS)

  # Expected results(JFA cookbook, matlab)
  assert equals(t.__Y__[0], y3, 2e-4)
  assert equals(t.__Y__[1], y4, 2e-4)
  assert equals(m.v, v_ref, 2e-4)
Example #8
0
def test_JFATrainInitialize():
  # Check that the initialization is consistent and using the rng (cf. issue #118)

  eps = 1e-10

  # UBM GMM
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR

  ## JFA
  jb = JFABase(ubm, 2, 2)
  # first round
  rng = bob.core.random.mt19937(0)
  jt = JFATrainer()
  #jt.rng = rng
  jt.initialize(jb, TRAINING_STATS, rng)
  u1 = jb.u
  v1 = jb.v
  d1 = jb.d

  # second round
  rng = bob.core.random.mt19937(0)
  jt.initialize(jb, TRAINING_STATS, rng)
  u2 = jb.u
  v2 = jb.v
  d2 = jb.d

  assert numpy.allclose(u1, u2, eps)
  assert numpy.allclose(v1, v2, eps)
  assert numpy.allclose(d1, d2, eps)
Example #9
0
def test_JFATrainer_updateZandD():
  # test the JFATrainer for updating Z and D

  d_ref = numpy.array([0.3110, 1.0138, 0.8297, 1.0382, 0.0095, 0.6320])

  z1 = numpy.array([0., 0., 0., 0., 0., 0.])
  z2 = numpy.array([0., 0., 0., 0., 0., 0.])
  z3_ref = numpy.array([0.3256, 1.8633, 0.6480, 0.8085, -0.0432, 0.2885])
  z4_ref = numpy.array([-0.3324, -0.1474, -0.4404, -0.4529, 0.0484, -0.5848])
  z=[z1, z2]

  # call the updateZ function
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR
  m = JFABase(ubm,2,2)
  t = JFATrainer()
  t.initialize(m, TRAINING_STATS)
  m.u = M_u
  m.v = M_v
  m.d = M_d
  t.__X__ = M_x
  t.__Y__ = M_y
  t.__Z__ = z
  t.e_step_d(m, TRAINING_STATS)
  t.m_step_d(m, TRAINING_STATS)

  # Expected results(JFA cookbook, matlab)
  assert equals(t.__Z__[0], z3_ref, 2e-4)
  assert equals(t.__Z__[1], z4_ref, 2e-4)
  assert equals(m.d, d_ref, 2e-4)
Example #10
0
def test_JFATrainer_updateXandU():
  # test the JFATrainer for updating X and U

  u_ref = numpy.array( [0.6729, 0.3408, 0.0544, 1.0653, 0.5399, 1.3035,
    2.4995, 0.4385, 0.1292, -0.0576, 1.1962, 0.0117]).reshape((6,2))

  x1 = numpy.array([0., 0., 0., 0.]).reshape((2,2))
  x2 = numpy.array([0., 0., 0., 0.]).reshape((2,2))
  x3 = numpy.array([0.2143, 1.8275, 3.1979, 0.1227]).reshape((2,2))
  x4 = numpy.array([-1.3861, 0.2359, 5.3326, -0.7914]).reshape((2,2))
  x  = [x1, x2]

  # call the updateX function
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR
  m = JFABase(ubm,2,2)
  t = JFATrainer()
  t.initialize(m, TRAINING_STATS)
  m.u = M_u
  m.v = M_v
  m.d = M_d
  t.__X__ = x
  t.__Y__ = M_y
  t.__Z__ = M_z
  t.e_step_u(m, TRAINING_STATS)
  t.m_step_u(m, TRAINING_STATS)

  # Expected results(JFA cookbook, matlab)
  assert equals(t.__X__[0], x3, 2e-4)
  assert equals(t.__X__[1], x4, 2e-4)
  assert equals(m.u, u_ref, 2e-4)
Example #11
0
def test_ISVTrainAndEnrol():
    # Train and enroll an 'ISVMachine'

    eps = 1e-10
    d_ref = numpy.array([
        0.39601136, 0.07348469, 0.47712682, 0.44738127, 0.43179856, 0.45086029
    ], 'float64')
    u_ref = numpy.array([[0.855125642430777, 0.563104284748032],
                         [-0.325497865404680, 1.923598985291687],
                         [0.511575659503837, 1.964288663083095],
                         [9.330165761678115, 1.073623827995043],
                         [0.511099245664012, 0.278551249248978],
                         [5.065578541930268, 0.509565618051587]], 'float64')
    z_ref = numpy.array([
        -0.079315777443826, 0.092702428248543, -0.342488761656616,
        -0.059922635809136, 0.133539981073604, 0.213118695516570
    ], 'float64')

    # Calls the train function
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR
    mb = ISVBase(ubm, 2)
    t = ISVTrainer(4.)
    t.initialize(mb, TRAINING_STATS)
    mb.u = M_u
    for i in range(10):
        t.e_step(mb, TRAINING_STATS)
        t.m_step(mb)

    assert numpy.allclose(mb.d, d_ref, eps)
    assert numpy.allclose(mb.u, u_ref, eps)

    # Calls the enroll function
    m = ISVMachine(mb)

    Ne = numpy.array([0.1579, 0.9245, 0.1323, 0.2458]).reshape((2, 2))
    Fe = numpy.array([
        0.1579, 0.1925, 0.3242, 0.1234, 0.2354, 0.2734, 0.2514, 0.5874, 0.3345,
        0.2463, 0.4789, 0.5236
    ]).reshape((6, 2))
    gse1 = GMMStats(2, 3)
    gse1.n = Ne[:, 0]
    gse1.sum_px = Fe[:, 0].reshape(2, 3)
    gse2 = GMMStats(2, 3)
    gse2.n = Ne[:, 1]
    gse2.sum_px = Fe[:, 1].reshape(2, 3)

    gse = [gse1, gse2]
    t.enroll(m, gse, 5)
    assert numpy.allclose(m.z, z_ref, eps)

    #Testing exceptions
    nose.tools.assert_raises(RuntimeError, t.initialize, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.initialize, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.e_step, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.e_step, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.enroll, m, [[1, 2, 2]], 5)
Example #12
0
def test_ISVTrainAndEnrol():
  # Train and enroll an 'ISVMachine'

  eps = 1e-10
  d_ref = numpy.array([0.39601136, 0.07348469, 0.47712682, 0.44738127, 0.43179856, 0.45086029], 'float64')
  u_ref = numpy.array([[0.855125642430777, 0.563104284748032], [-0.325497865404680, 1.923598985291687], [0.511575659503837, 1.964288663083095], [9.330165761678115, 1.073623827995043], [0.511099245664012, 0.278551249248978], [5.065578541930268, 0.509565618051587]], 'float64')
  z_ref = numpy.array([-0.079315777443826, 0.092702428248543, -0.342488761656616, -0.059922635809136 , 0.133539981073604, 0.213118695516570], 'float64')

  # Calls the train function
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR
  mb = ISVBase(ubm,2)
  t = ISVTrainer(4.)
  t.initialize(mb, TRAINING_STATS)
  mb.u = M_u
  for i in range(10):
    t.e_step(mb, TRAINING_STATS)
    t.m_step(mb)

  assert numpy.allclose(mb.d, d_ref, eps)
  assert numpy.allclose(mb.u, u_ref, eps)

  # Calls the enroll function
  m = ISVMachine(mb)

  Ne = numpy.array([0.1579, 0.9245, 0.1323, 0.2458]).reshape((2,2))
  Fe = numpy.array([0.1579, 0.1925, 0.3242, 0.1234, 0.2354, 0.2734, 0.2514, 0.5874, 0.3345, 0.2463, 0.4789, 0.5236]).reshape((6,2))
  gse1 = GMMStats(2,3)
  gse1.n = Ne[:,0]
  gse1.sum_px = Fe[:,0].reshape(2,3)
  gse2 = GMMStats(2,3)
  gse2.n = Ne[:,1]
  gse2.sum_px = Fe[:,1].reshape(2,3)

  gse = [gse1, gse2]
  t.enroll(m, gse, 5)
  assert numpy.allclose(m.z, z_ref, eps)
  
  #Testing exceptions
  nose.tools.assert_raises(RuntimeError, t.initialize, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.initialize, mb, [[1,2,2]])
  nose.tools.assert_raises(RuntimeError, t.e_step, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.e_step, mb, [[1,2,2]])
  nose.tools.assert_raises(RuntimeError, t.enroll, m, [[1,2,2]],5)
Example #13
0
def test_JFATrainAndEnrol():
    # Train and enroll a JFAMachine

    # Calls the train function
    ubm = GMMMachine(2, 3)
    ubm.mean_supervector = UBM_MEAN
    ubm.variance_supervector = UBM_VAR
    mb = JFABase(ubm, 2, 2)
    t = JFATrainer()
    t.initialize(mb, TRAINING_STATS)
    mb.u = M_u
    mb.v = M_v
    mb.d = M_d
    bob.learn.em.train_jfa(t, mb, TRAINING_STATS, initialize=False)

    v_ref = numpy.array([[0.245364911936476, 0.978133261775424],
                         [0.769646805052223, 0.940070736856596],
                         [0.310779202800089, 1.456332053893072],
                         [0.184760934399551, 2.265139705602147],
                         [0.701987784039800, 0.081632150899400],
                         [0.074344030229297, 1.090248340917255]], 'float64')
    u_ref = numpy.array([[0.049424652628448, 0.060480486336896],
                         [0.178104127464007, 1.884873813495153],
                         [1.204011484266777, 2.281351307871720],
                         [7.278512126426286, -0.390966087173334],
                         [-0.084424326581145, -0.081725474934414],
                         [4.042143689831097, -0.262576386580701]], 'float64')
    d_ref = numpy.array([
        9.648467e-18, 2.63720683155e-12, 2.11822157653706e-10, 9.1047243e-17,
        1.41163442535567e-10, 3.30581e-19
    ], 'float64')

    eps = 1e-10
    assert numpy.allclose(mb.v, v_ref, eps)
    assert numpy.allclose(mb.u, u_ref, eps)
    assert numpy.allclose(mb.d, d_ref, eps)

    # Calls the enroll function
    m = JFAMachine(mb)

    Ne = numpy.array([0.1579, 0.9245, 0.1323, 0.2458]).reshape((2, 2))
    Fe = numpy.array([
        0.1579, 0.1925, 0.3242, 0.1234, 0.2354, 0.2734, 0.2514, 0.5874, 0.3345,
        0.2463, 0.4789, 0.5236
    ]).reshape((6, 2))
    gse1 = GMMStats(2, 3)
    gse1.n = Ne[:, 0]
    gse1.sum_px = Fe[:, 0].reshape(2, 3)
    gse2 = GMMStats(2, 3)
    gse2.n = Ne[:, 1]
    gse2.sum_px = Fe[:, 1].reshape(2, 3)

    gse = [gse1, gse2]
    t.enroll(m, gse, 5)

    y_ref = numpy.array([0.555991469319657, 0.002773650670010], 'float64')
    z_ref = numpy.array([
        8.2228e-20, 3.15216909492e-13, -1.48616735364395e-10, 1.0625905e-17,
        3.7150503117895e-11, 1.71104e-19
    ], 'float64')
    assert numpy.allclose(m.y, y_ref, eps)
    assert numpy.allclose(m.z, z_ref, eps)

    #Testing exceptions
    nose.tools.assert_raises(RuntimeError, t.initialize, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.initialize, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.e_step_u, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.e_step_u, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.m_step_u, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.m_step_u, mb, [[1, 2, 2]])

    nose.tools.assert_raises(RuntimeError, t.e_step_v, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.e_step_v, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.m_step_v, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.m_step_v, mb, [[1, 2, 2]])

    nose.tools.assert_raises(RuntimeError, t.e_step_d, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.e_step_d, mb, [[1, 2, 2]])
    nose.tools.assert_raises(RuntimeError, t.m_step_d, mb, [1, 2, 2])
    nose.tools.assert_raises(RuntimeError, t.m_step_d, mb, [[1, 2, 2]])

    nose.tools.assert_raises(RuntimeError, t.enroll, m, [[1, 2, 2]], 5)
Example #14
0
def test_JFATrainAndEnrol():
  # Train and enroll a JFAMachine

  # Calls the train function
  ubm = GMMMachine(2,3)
  ubm.mean_supervector = UBM_MEAN
  ubm.variance_supervector = UBM_VAR
  mb = JFABase(ubm, 2, 2)
  t = JFATrainer()
  t.initialize(mb, TRAINING_STATS)
  mb.u = M_u
  mb.v = M_v
  mb.d = M_d
  bob.learn.em.train_jfa(t,mb, TRAINING_STATS, initialize=False)

  v_ref = numpy.array([[0.245364911936476, 0.978133261775424], [0.769646805052223, 0.940070736856596], [0.310779202800089, 1.456332053893072],
        [0.184760934399551, 2.265139705602147], [0.701987784039800, 0.081632150899400], [0.074344030229297, 1.090248340917255]], 'float64')
  u_ref = numpy.array([[0.049424652628448, 0.060480486336896], [0.178104127464007, 1.884873813495153], [1.204011484266777, 2.281351307871720],
        [7.278512126426286, -0.390966087173334], [-0.084424326581145, -0.081725474934414], [4.042143689831097, -0.262576386580701]], 'float64')
  d_ref = numpy.array([9.648467e-18, 2.63720683155e-12, 2.11822157653706e-10, 9.1047243e-17, 1.41163442535567e-10, 3.30581e-19], 'float64')

  eps = 1e-10
  assert numpy.allclose(mb.v, v_ref, eps)
  assert numpy.allclose(mb.u, u_ref, eps)
  assert numpy.allclose(mb.d, d_ref, eps)

  # Calls the enroll function
  m = JFAMachine(mb)

  Ne = numpy.array([0.1579, 0.9245, 0.1323, 0.2458]).reshape((2,2))
  Fe = numpy.array([0.1579, 0.1925, 0.3242, 0.1234, 0.2354, 0.2734, 0.2514, 0.5874, 0.3345, 0.2463, 0.4789, 0.5236]).reshape((6,2))
  gse1 = GMMStats(2,3)
  gse1.n = Ne[:,0]
  gse1.sum_px = Fe[:,0].reshape(2,3)
  gse2 = GMMStats(2,3)
  gse2.n = Ne[:,1]
  gse2.sum_px = Fe[:,1].reshape(2,3)

  gse = [gse1, gse2]
  t.enroll(m, gse, 5)

  y_ref = numpy.array([0.555991469319657, 0.002773650670010], 'float64')
  z_ref = numpy.array([8.2228e-20, 3.15216909492e-13, -1.48616735364395e-10, 1.0625905e-17, 3.7150503117895e-11, 1.71104e-19], 'float64')
  assert numpy.allclose(m.y, y_ref, eps)
  assert numpy.allclose(m.z, z_ref, eps)
  
  #Testing exceptions
  nose.tools.assert_raises(RuntimeError, t.initialize, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.initialize, mb, [[1,2,2]])
  nose.tools.assert_raises(RuntimeError, t.e_step_u, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.e_step_u, mb, [[1,2,2]])
  nose.tools.assert_raises(RuntimeError, t.m_step_u, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.m_step_u, mb, [[1,2,2]])
  
  nose.tools.assert_raises(RuntimeError, t.e_step_v, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.e_step_v, mb, [[1,2,2]])  
  nose.tools.assert_raises(RuntimeError, t.m_step_v, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.m_step_v, mb, [[1,2,2]])  
    
  nose.tools.assert_raises(RuntimeError, t.e_step_d, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.e_step_d, mb, [[1,2,2]])
  nose.tools.assert_raises(RuntimeError, t.m_step_d, mb, [1,2,2])  
  nose.tools.assert_raises(RuntimeError, t.m_step_d, mb, [[1,2,2]])
  
  nose.tools.assert_raises(RuntimeError, t.enroll, m, [[1,2,2]],5)