p = Paragraph( text="The divs below were configured with additional css_classes:") div1 = Div(text=""" <p> This Bokeh Div adds the style classes:<p> <pre> .custom { border-radius: 0.5em; padding: 1em; } .custom-1 { border: 3px solid #2397D8; } </pre> """) div1.css_classes = ["custom", "custom-1"] div2 = Div(text=""" <p> This Bokeh Div adds the style classes:<p> <pre> .custom { border-radius: 0.5em; padding: 1em; } .custom-2 { border: 3px solid #14999A; background-color: whitesmoke; } </pre> """) div2.css_classes = ["custom", "custom-2"]
div1 = Div( text=""" <p> This Bokeh Div adds the style classes:<p> <pre> .custom { border-radius: 0.5em; padding: 1em; } .custom-1 { border: 3px solid #2397D8; } </pre> """ ) div1.css_classes = ["custom", "custom-1"] div2 = Div( text=""" <p> This Bokeh Div adds the style classes:<p> <pre> .custom { border-radius: 0.5em; padding: 1em; } .custom-2 { border: 3px solid #14999A; background-color: whitesmoke; } </pre> """
], formatters={ "date": "datetime" }, mode="vline" )) #finance_info = Div(text=""" # <b>NFLX</b> # <div class='price'> # 24.31 # </div> #""") div = Div(text="""Click on the graph to display a list of financial articles on and before that date""", width=500, height=500) div.css_classes = ["scroll-box"] button_callback = CustomJS(args=dict(radio_button_group = radio_button_group, div=div, text_input=text_input, output=output, source=source),code=""" output.text = '' div.text='' var ticker = text_input.value; jQuery.ajax({ type: 'POST', url: '/update_y_data', data: {"ticker_sent": ticker}, dataType: 'json', success: function (json_from_server) { var updated_price_list = json_from_server[ticker][0]; var current_date_data = json_from_server[ticker][1]; source.data['price'] = updated_price_list; var current_price = updated_price_list[updated_price_list.length-1]
tsneMetricSelect = Select(title="metrique", value='cosine', width=120, options=['braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']) tsneLoading = Div() LoadingDiv = Div() informationDiv = Div(width=600) NumberElementsDiv = Div(width=250) iterationCount = Div(width=100) minus = Div(text='-',width=15) plus = Div(text='+',width=15) word1 = TextInput(width=200, title="Analogie") word2 = TextInput(width=200, title="-") word3 = TextInput(width=200, title="+") calculateAnalogy = Button(label='Calculer', button_type='success', width=60) equals = Div(text=" ", width=120) searchBox = TextInput(width=250, placeholder="Rechercher ...") searchButton = Button(label='Rechercher', button_type='success', width=100) equals.css_classes = ["center"] # p3.css_classes = ["blackBorder"] analogyColumns = [ TableColumn(field="words", title="Mots"), TableColumn(field="similarity", title="Similarit\u00E9"), ] analogyDataTable = DataTable(source=sourceAnalogy, columns=analogyColumns, index_position=None, width=500, height=200) analogy = row(column(word1, word2, word3, row(calculateAnalogy, Spacer(width=20), equals)), Spacer(width=40), analogyDataTable) renderer = p2.select(dict(type=GlyphRenderer)) ds = renderer[0].data_source d1 = Div(text="<h2>Choix d'un mod\u00E8le</h2>", width=500) d2 = Div(text="<h2>Choix d'un mot</h2>", width=500) d3 = Div(text="<h2>Visualisation globale des repr\u00E9sentations</h2><br><h3>Vecteurs de dimension 100 projet\u00E9s dans le plan selon :</h3>", width=500) projectionMethode = RadioGroup(labels=["la m\u00E9thode t-SNE en deux dimensions", "les deux premiers axes principaux"], active=0) d4 = Div(text="<h2>Exploration des voisinages</h2><br><h3>Voisinages \u00E9tablis selon :</h3>", width=500)