def main( model_name="bdncm/20200808", sdf_file="~/Applications/db_access/mol_builder/struct_rxn_ntwk_rgrn_qc.sdf", label_file="~/Applications/db_access/mol_builder/label_rxn_ntwk_rgrn_qc.yaml", feature_file="~/Applications/db_access/mol_builder/feature_rxn_ntwk_rgrn_qc.yaml", error_file="~/Applications/db_access/mol_builder/post_analysis/evaluation_error.tsv", charge_file="~/Applications/db_access/mol_builder/post_analysis/charges.tsv", ): seed_torch() dataset = load_dataset(model_name, sdf_file, label_file, feature_file) # trainset, valset, testset = train_validation_test_split( # dataset, validation=0.1, test=0.1 # ) trainset, valset, testset = train_validation_test_split_selected_bond_in_train( dataset, validation=0.1, test=0.1, selected_bond_type=(("H", "H"), ("H", "F"), ("F", "F")), ) # data_loader = DataLoaderReactionNetwork(trainset, batch_size=100, shuffle=False) # data_loader = DataLoaderReactionNetwork(valset, batch_size=100, shuffle=False) data_loader = DataLoaderReactionNetwork(testset, batch_size=100, shuffle=False) model = load_model(model_name) # make predictions feature_names = ["atom", "bond", "global"] ids, targets, predictions, errors, species = evaluate( model, feature_names, data_loader) # sort by error ids, targets, predictions, errors, species = zip(*sorted( zip(ids, targets, predictions, errors, species), key=lambda x: x[3])) df = pd.DataFrame({ "identifier": ids, "target": targets, "prediction": predictions, "error": errors, "species": species, }) df.to_csv(to_path(error_file), sep="\t", index=False) # charges df = get_charges(label_file, feature_file) df.to_csv(to_path(charge_file), sep="\t", index=False)
def main( model_name="bdncm/20200808", sdf_file="~/Applications/db_access/mol_builder/struct_rxn_ntwk_rgrn_qc.sdf", label_file="~/Applications/db_access/mol_builder/label_rxn_ntwk_rgrn_qc.yaml", feature_file="~/Applications/db_access/mol_builder/feature_rxn_ntwk_rgrn_qc.yaml", feat_filename="~/Applications/db_access/mol_builder/post_analysis/feats.tsv", meta_filename="~/Applications/db_access/mol_builder/post_analysis/feats_metadata.tsv", ): seed_torch() dataset = load_dataset(model_name, sdf_file, label_file, feature_file) _, _, testset = train_validation_test_split(dataset, validation=0.1, test=0.1) data_loader = DataLoaderReactionNetwork(testset, batch_size=100, shuffle=False) # data_loader = DataLoaderReactionNetwork(dataset, batch_size=100, shuffle=False) model = load_model(model_name) # make predictions feature_names = ["atom", "bond", "global"] ids, targets, predictions, errors, species, features = evaluate( model, feature_names, data_loader, compute_features=True) df = pd.DataFrame(features) df.to_csv(to_path(feat_filename), sep="\t", header=False, index=False) # metadata charges = get_charges(label_file, feature_file) rct_charges = [] prdt1_charges = [] prdt2_charges = [] for i in ids: c = charges[charges["identifier"] == i].to_dict("records")[0] rct_charges.append(c["charge"]) prdt1_charges.append(c["product1 charge"]) prdt2_charges.append(c["product2 charge"]) df = pd.DataFrame({ "identifier": ids, "target": targets, "prediction": predictions, "error": errors, "species": species, "reactant charge": rct_charges, "product1 charge": prdt1_charges, "product2 charge": prdt2_charges, }) df.to_csv(to_path(meta_filename), sep="\t", index=False)
def main( model_name="mesd/20200808", sdf_file="/Users/mjwen/Applications/db_access/mol_builder/post_analysis/lbdc/struct.sdf", label_file="/Users/mjwen/Applications/db_access/mol_builder/post_analysis/lbdc/label.yaml", feature_file="/Users/mjwen/Applications/db_access/mol_builder/post_analysis/lbdc/feature.yaml", feat_meta_prefix=f"~/Applications/db_access/mol_builder/post_analysis/lbdc", ): seed_torch() dataset = load_dataset(model_name, sdf_file, label_file, feature_file) data_loader = DataLoaderReactionNetwork(dataset, batch_size=100, shuffle=False) model = load_model(model_name, pretrained=False) # make predictions feature_names = ["atom", "bond", "global"] ids, targets, predictions, broken_bonds, species, features = evaluate( model, feature_names, data_loader ) # write to file for idx, ft in features.items(): fname = to_path(feat_meta_prefix).joinpath(f"feats_layer{idx}.tsv") df = pd.DataFrame(ft) df.to_csv(fname, sep="\t", header=False, index=False) df = pd.DataFrame( { "identifier": ids, "target": targets, "prediction": predictions, "broken_bonds": broken_bonds, "species": species, } ) to_path(feat_meta_prefix).joinpath("feats_metadata.tsv") df.to_csv(fname, sep="\t", index=False)
def main_worker(gpu, world_size, args): global best args.gpu = gpu if not args.distributed or (args.distributed and args.gpu == 0): print("\n\nStart training at:", datetime.now()) if args.distributed: dist.init_process_group( args.dist_backend, init_method=args.dist_url, world_size=world_size, rank=args.gpu, ) # Explicitly setting seed to ensure the same dataset split and models created in # two processes (when distributed) start from the same random weights and biases seed_torch() if args.restore: dataset_state_dict_filename = args.dataset_state_dict_filename if dataset_state_dict_filename is None: warnings.warn( "Restore with `args.dataset_state_dict_filename` set to None.") elif not Path(dataset_state_dict_filename).exists(): warnings.warn(f"`{dataset_state_dict_filename} not found; set " f"args.dataset_state_dict_filename` to None") dataset_state_dict_filename = None else: dataset_state_dict_filename = None # convert reactions in csv file to atom mapped label file if necessary mols, attrs, labels = read_input_files(args.molecule_file, args.molecule_attributes_file, args.reaction_file) dataset = ReactionNetworkDataset( grapher=get_grapher(), molecules=mols, labels=labels, extra_features=attrs, feature_transformer=True, label_transformer=True, state_dict_filename=dataset_state_dict_filename, ) trainset, valset, testset = train_validation_test_split(dataset, validation=0.1, test=0.1) if not args.distributed or (args.distributed and args.gpu == 0): torch.save(dataset.state_dict(), args.dataset_state_dict_filename) print("Trainset size: {}, valset size: {}: testset size: {}.".format( len(trainset), len(valset), len(testset))) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( trainset) else: train_sampler = None train_loader = DataLoaderReactionNetwork( trainset, batch_size=args.batch_size, shuffle=(train_sampler is None), sampler=train_sampler, ) # larger val and test set batch_size is faster but needs more memory # adjust the batch size of to fit memory bs = max(len(valset) // 10, 1) val_loader = DataLoaderReactionNetwork(valset, batch_size=bs, shuffle=False) bs = max(len(testset) // 10, 1) test_loader = DataLoaderReactionNetwork(testset, batch_size=bs, shuffle=False) ### model feature_names = ["atom", "bond", "global"] set2set_ntypes_direct = ["global"] feature_size = dataset.feature_size args.feature_size = feature_size args.set2set_ntypes_direct = set2set_ntypes_direct # save args if not args.distributed or (args.distributed and args.gpu == 0): yaml_dump(args, "train_args.yaml") model = GatedGCNReactionNetwork( in_feats=args.feature_size, embedding_size=args.embedding_size, gated_num_layers=args.gated_num_layers, gated_hidden_size=args.gated_hidden_size, gated_num_fc_layers=args.gated_num_fc_layers, gated_graph_norm=args.gated_graph_norm, gated_batch_norm=args.gated_batch_norm, gated_activation=args.gated_activation, gated_residual=args.gated_residual, gated_dropout=args.gated_dropout, num_lstm_iters=args.num_lstm_iters, num_lstm_layers=args.num_lstm_layers, set2set_ntypes_direct=args.set2set_ntypes_direct, fc_num_layers=args.fc_num_layers, fc_hidden_size=args.fc_hidden_size, fc_batch_norm=args.fc_batch_norm, fc_activation=args.fc_activation, fc_dropout=args.fc_dropout, outdim=1, conv="GatedGCNConv", ) if not args.distributed or (args.distributed and args.gpu == 0): print(model) if args.gpu is not None: model.to(args.gpu) if args.distributed: ddp_model = DDP(model, device_ids=[args.gpu]) ddp_model.feature_before_fc = model.feature_before_fc model = ddp_model ### optimizer, loss, and metric optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) loss_func = MSELoss(reduction="mean") metric = WeightedL1Loss(reduction="sum") ### learning rate scheduler and stopper scheduler = ReduceLROnPlateau(optimizer, mode="min", factor=0.4, patience=50, verbose=True) stopper = EarlyStopping(patience=150) # load checkpoint state_dict_objs = { "model": model, "optimizer": optimizer, "scheduler": scheduler } if args.restore: try: if args.gpu is None: checkpoint = load_checkpoints(state_dict_objs, filename="checkpoint.pkl") else: # Map model to be loaded to specified single gpu. loc = "cuda:{}".format(args.gpu) checkpoint = load_checkpoints(state_dict_objs, map_location=loc, filename="checkpoint.pkl") args.start_epoch = checkpoint["epoch"] best = checkpoint["best"] print( f"Successfully load checkpoints, best {best}, epoch {args.start_epoch}" ) except FileNotFoundError as e: warnings.warn(str(e) + " Continue without loading checkpoints.") pass # start training if not args.distributed or (args.distributed and args.gpu == 0): print( "\n\n# Epoch Loss TrainAcc ValAcc Time (s)") sys.stdout.flush() for epoch in range(args.start_epoch, args.epochs): ti = time.time() # In distributed mode, calling the set_epoch method is needed to make shuffling # work; each process will use the same random seed otherwise. if args.distributed: train_sampler.set_epoch(epoch) # train loss, train_acc = train(optimizer, model, feature_names, train_loader, loss_func, metric, args.gpu) # bad, we get nan if np.isnan(loss): print("\n\nBad, we get nan for loss. Existing") sys.stdout.flush() sys.exit(1) # evaluate val_acc = evaluate(model, feature_names, val_loader, metric, args.gpu) if stopper.step(val_acc): pickle_dump(best, args.output_file) # save results for hyperparam tune break scheduler.step(val_acc) is_best = val_acc < best if is_best: best = val_acc # save checkpoint if not args.distributed or (args.distributed and args.gpu == 0): misc_objs = {"best": best, "epoch": epoch} save_checkpoints( state_dict_objs, misc_objs, is_best, msg=f"epoch: {epoch}, score {val_acc}", ) tt = time.time() - ti print("{:5d} {:12.6e} {:12.6e} {:12.6e} {:.2f}".format( epoch, loss, train_acc, val_acc, tt)) if epoch % 10 == 0: sys.stdout.flush() # load best to calculate test accuracy if args.gpu is None: checkpoint = load_checkpoints(state_dict_objs, filename="best_checkpoint.pkl") else: # Map model to be loaded to specified single gpu. loc = "cuda:{}".format(args.gpu) checkpoint = load_checkpoints(state_dict_objs, map_location=loc, filename="best_checkpoint.pkl") if not args.distributed or (args.distributed and args.gpu == 0): test_acc = evaluate(model, feature_names, test_loader, metric, args.gpu) print("\n#TestAcc: {:12.6e} \n".format(test_acc)) print("\nFinish training at:", datetime.now())