def plot_errorbar1(): with figsize(y=2): plt.figure() plot_errorbars([(160, 8, 'A'), (170, 8, 'B')], xlims=(145, 185), ylims=(-1, 1)) plt.show() plt.savefig('../figs/gh_errorbar1.png', pad_inches=0.)
def plot_hypothesis5(): weights = [ 158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6 ] xs = range(1, len(weights) + 1) line = np.poly1d(np.polyfit(xs, weights, 1)) with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 13), weights, label='weights', yerr=5, fmt='o', capthick=2, capsize=10) plt.plot(xs, line(xs), c='r', label='hypothesis') plt.xlim(0, 13) plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)') show_legend() plt.savefig('../figs/gh_hypothesis5.png', pad_inches=0.1)
def plot_estimate_chart_3(): with figsize(y=2.5): plt.figure() ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) ax.annotate('', xy=[1,159], xytext=[1,164.2], arrowprops=dict(arrowstyle='-', ec='k', lw=3, shrinkA=8, shrinkB=8)) est_y = (158 + .4*(164.2-158)) plt.scatter ([0,1], [158.0,est_y], c='k',s=128) plt.scatter ([1], [164.2], c='b',s=128) plt.scatter ([1], [159], c='r', s=128) plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red') plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue') plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18) plt.text (0.95, est_y, "new estimate ($\hat{x}_{t}$)", ha='right', va='center',fontsize=18) plt.xlabel('day') plt.ylabel('weight (lbs)') ax.xaxis.grid(True, which="major", linestyle='dotted') ax.yaxis.grid(True, which="major", linestyle='dotted') plt.savefig('../figs/gh_estimate3.png', pad_inches=0.1)
def plot_errorbar1(): with figsize(y=2): plt.figure() plot_errorbars([(160, 8, 'A'), (170, 8, 'B')], xlims=(145, 185), ylims=(-1, 1)) plt.show()
def plot_hypothesis2(): with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 11), [169, 170, 169,171, 170, 171, 169, 170, 169, 170], xerr=0, yerr=6, fmt='bo', capthick=2, capsize=10) plt.plot([1, 10], [169, 170.5], color='g', ls='--') plt.xlim(0, 11); plt.ylim(150, 185) plt.xlabel('day') plt.ylabel('lbs')
def plot_hypothesis2(): with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 11), [169, 170, 169,171, 170, 171, 169, 170, 169, 170], xerr=0, yerr=6, fmt='bo', capthick=2, capsize=10) plt.plot([1, 10], [169, 170.5], color='g', ls='--') plt.xlim(0, 11); plt.ylim(150, 185) plt.xlabel('day') plt.ylabel('lbs') plt.savefig('../figs/gh_hypothesis2.png', pad_inches=0.1)
def plot_estimate_chart_1(): with figsize(y=2.5): plt.figure() ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r',shrinkA=6, lw=3,shrinkB=5)) plt.scatter ([0], [158], c='b') plt.scatter ([1], [159], c='r') plt.xlabel('day') plt.ylabel('weight (lbs)') ax.xaxis.grid(True, which="major", linestyle='dotted') ax.yaxis.grid(True, which="major", linestyle='dotted') plt.tight_layout()
def plot_hypothesis3(): weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6] with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 13), weights, xerr=0, yerr=6, fmt='o', capthick=2, capsize=10) plt.xlim(0, 13); plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)')
def plot_hypothesis4(): weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6] with figsize(y=2.5): plt.figure() ave = np.sum(weights) / len(weights) plt.errorbar(range(1,13), weights, label='weights', yerr=6, fmt='o', capthick=2, capsize=10) plt.plot([1, 12], [ave,ave], c='r', label='hypothesis') plt.xlim(0, 13); plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)') show_legend()
def plot_hypothesis1(): with figsize(y=2.5): plt.figure() plt.errorbar([1, 2, 3], [170, 161, 169], xerr=0, yerr=10, fmt='bo', capthick=2, capsize=10) plt.plot([1, 3], [180, 160], color='g', ls='--') plt.plot([1, 3], [170, 170], color='g', ls='--') plt.plot([1, 3], [160, 175], color='g', ls='--') plt.plot([1, 2, 3], [180, 152, 179], color='g', ls='--') plt.xlim(0,4); plt.ylim(150, 185) plt.xlabel('day') plt.ylabel('lbs') plt.tight_layout()
def plot_hypothesis3(): weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6] with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 13), weights, xerr=0, yerr=6, fmt='o', capthick=2, capsize=10) plt.xlim(0, 13); plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)') plt.savefig('../figs/gh_hypothesis3.png', pad_inches=0.1)
def plot_estimate_chart_1(): with figsize(y=2.5): plt.figure() ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r',shrinkA=6, lw=3,shrinkB=5)) plt.scatter ([0], [158], c='b') plt.scatter ([1], [159], c='r') plt.xlabel('day') plt.ylabel('weight (lbs)') ax.xaxis.grid(True, which="major", linestyle='dotted') ax.yaxis.grid(True, which="major", linestyle='dotted') plt.tight_layout() plt.savefig('../figs/gh_estimate1.png', pad_inches=0.1)
def plot_hypothesis4(): weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6] with figsize(y=2.5): plt.figure() ave = np.sum(weights) / len(weights) plt.errorbar(range(1,13), weights, label='weights', yerr=6, fmt='o', capthick=2, capsize=10) plt.plot([1, 12], [ave,ave], c='r', label='hypothesis') plt.xlim(0, 13); plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)') show_legend() plt.savefig('../figs/gh_hypothesis4.png', pad_inches=0.1)
def plot_hypothesis1(): with figsize(y=2.5): plt.figure() plt.errorbar([1, 2, 3], [170, 161, 169], xerr=0, yerr=10, fmt='bo', capthick=2, capsize=10) plt.plot([1, 3], [180, 160], color='g', ls='--') plt.plot([1, 3], [170, 170], color='g', ls='--') plt.plot([1, 3], [160, 175], color='g', ls='--') plt.plot([1, 2, 3], [180, 152, 179], color='g', ls='--') plt.xlim(0,4); plt.ylim(150, 185) plt.xlabel('day') plt.ylabel('lbs') plt.tight_layout() plt.savefig('../figs/gh_hypothesis1.png', pad_inches=0.1)
def plot_hypothesis5(): weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6, 167.4, 166.4, 171.0, 171.2, 172.6] xs = range(1, len(weights)+1) line = np.poly1d(np.polyfit(xs, weights, 1)) with figsize(y=2.5): plt.figure() plt.errorbar(range(1, 13), weights, label='weights', yerr=5, fmt='o', capthick=2, capsize=10) plt.plot (xs, line(xs), c='r', label='hypothesis') plt.xlim(0, 13); plt.ylim(145, 185) plt.xlabel('day') plt.ylabel('weight (lbs)') show_legend()
def plot_estimate_chart_2(): with figsize(y=2.5): plt.figure() ax = plt.axes() ax.annotate('', xy=[1,159], xytext=[0,158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) plt.scatter ([0], [158.0], c='k',s=128) plt.scatter ([1], [164.2], c='b',s=128) plt.scatter ([1], [159], c='r', s=128) plt.text (1.0, 158.8, "prediction ($x_t)$", ha='center',va='top',fontsize=18,color='red') plt.text (1.0, 164.4, "measurement ($z$)",ha='center',va='bottom',fontsize=18,color='blue') plt.text (0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top',fontsize=18) plt.xlabel('day') plt.ylabel('weight (lbs)') ax.xaxis.grid(True, which="major", linestyle='dotted') ax.yaxis.grid(True, which="major", linestyle='dotted')
def plot_estimate_chart_2(): with figsize(y=2.5): plt.figure() ax = plt.axes() ax.annotate('', xy=[1, 159], xytext=[0, 158], arrowprops=dict(arrowstyle='->', ec='r', lw=3, shrinkA=6, shrinkB=5)) plt.scatter([0], [158.0], c='k', s=128) plt.scatter([1], [164.2], c='b', s=128) plt.scatter([1], [159], c='r', s=128) plt.text(1.0, 158.8, "prediction ($x_t)$", ha='center', va='top', fontsize=18, color='red') plt.text(1.0, 164.4, "measurement ($z$)", ha='center', va='bottom', fontsize=18, color='blue') plt.text(0, 157.8, "estimate ($\hat{x}_{t-1}$)", ha='center', va='top', fontsize=18) plt.xlabel('day') plt.ylabel('weight (lbs)') ax.xaxis.grid(True, which="major", linestyle='dotted') ax.yaxis.grid(True, which="major", linestyle='dotted')
def plot_errorbar3(): with book_format.figsize(y=1.5): book_plots.plot_errorbars([(160, 1, 'A'), (170, 9, 'B')], xlims=(145, 185), ylims=(-1, 2))
def plot_errorbar1(): with book_format.figsize(y=1.5): book_plots.plot_errorbars([(160, 8, 'A'), (170, 8, 'B')], xlims=(145, 185))
def plot_errorbar2(): with figsize(y=2): plt.figure() plot_errorbars([(160, 3, 'A'), (170, 9, 'B')], xlims=(145, 185), ylims=(-1, 1))
#!/usr/bin/env python # coding: utf-8 # mus and sigmas - не достаточно # fixme: похоже чтобы воспользоваться корреляцией # нужно знать ковариационную матрицу import numpy as np from code.gaussian_internal import plot_correlated_data import code.mkf_internal as mkf_internal height = [60, 62, 63, 65, 65.1, 68, 69, 70, 72, 74] weight = [95, 120, 127, 119, 151, 143, 173, 171, 180, 210] plot_correlated_data(height, weight, 'Height (in)', 'Weight (lbs)', False) X = np.linspace( 1, 10, 100 ) Y = np.linspace( 1, 10, 100 ) print np.cov( X, Y ) mean = (2, 17) cov = [[10.,0], [0,4.]] # join prob. #mk.plot_3d_covariance( mean, cov ) from book_format import set_figsize, figsize with figsize(y=4): mkf_internal.plot_3_covariances()