Example #1
0
def adaClassify(datToClass, classifierArr):
    dataMatrix = mat(datToClass)
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m,1)))
    #iterate all classifier, and estimate a value of each classifier using stumpClassify()
    for i in range(len(classifierArr)):
        classEst = boost.stumpClassify(dataMatrix, classifierArr[i]['dim'], classifierArr[i]['thresh'],
                                       classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha']*classEst
    return sign(aggClassEst)
def adaClassify(datToClass, classifierArr):
    dataMatrix = mat(datToClass)
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m, 1)))
    for i in range(len(classifierArr)):
        classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'],
                                 classifierArr[i]['thresh'],
                                 classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha'] * classEst
        print(aggClassEst.T)
    return sign(aggClassEst.T)
Example #3
0
def adaClassify(datToClass, classifierArr):
    '''
    classify data with our trained classifiers
    '''
    dataMatrix = np.mat(datToClass)
    m = np.shape(dataMatrix)[0]
    aggClassEst = np.mat(np.zeros((m, 1)))
    for i in range(len(classifierArr)):
        classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'],\
                                 classifierArr[i]['thresh'],\
                                 classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha'] * classEst
        #print(aggClassEst)
    return np.sign(aggClassEst)
Example #4
0
def adaClassify(dataToClass, classifierArr):
    '''
    AdaBoost分类函数
    input:一个或多个待分类样例、多个弱分类器组成的数组
    '''
    dataMatrix = np.mat(dataToClass)
    m = np.shape(dataMatrix)[0]
    aggClassEst = np.mat(np.zeros((m, 1)))  #同上
    for i in range(len(classifierArr)):
        classEst = boost.stumpClassify(dataMatrix,classifierArr[i]['dim'],\
                                       classifierArr[i]['thresh'],\
                                       classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha'] * classEst
        print(aggClassEst)
    return np.sign(aggClassEst)
def adaClassify(datToClass, classifierArray):
    '''
    输入参数:
    datToClass:一个或者多个待分类样例
    classifierArray:多个弱分类进行分类的函数
    '''
    dataMatrix = np.mat(datToClass)
    m = np.shape(dataMatrix)[0]
    #记录每个数据点的类别估计累计值
    aggClassEst = np.mat(np.zeros((m, 1)))
    #遍历classifierArray中的所有弱分类器
    for i in range(len(classifierArray)):
        classEst = boost.stumpClassify(dataMatrix, classifierArray[i]['dim'], \
                                       classifierArray[i]['thresh'], \
                                       classifierArray[i]['ineq'])
        aggClassEst += classifierArray[i]['alpha'] * classEst
        print(aggClassEst)
    return np.sign(aggClassEst)
Example #6
0
def adaClassify(dataToClass, classifierArr):
    """
    根据训练得到的一组弱分类器及其alpha权重,对数据进行分类
    :param datToClass: 待分类数据的新数据
    :param classifierArr: 弱分类器集合
    :return:
    """
    dataMatrix = mat(dataToClass)
    m = dataMatrix.shape[0]
    aggClassEst = mat(zeros((m, 1)))

    print("#############Prediction begin......##########")
    for i in range(len(classifierArr)):
        print("==========%d th classifier predict result:===========" % i)
        classEst = boost.stumpClassify(dataMatrix, classifierArr[i]['dim'],
                                       classifierArr[i]['thresh'],
                                       classifierArr[i]['ineq'])
        aggClassEst += classEst * classifierArr[i]['alpha']
        print(aggClassEst)
        print()

    return sign(aggClassEst)