Example #1
0
def masked_transfer_color(f0, f1, dest, flow, imask, row, col, t=0.5):
    """ Find and set the transfer color for pixel [row][cow] """
    # for now, just defauly to using the value at f1:
    h = dest.shape[0]
    w = dest.shape[1]
    u = flow[row][col]
    ux = u[0]/w
    uy = -u[1]/h
    (x, y) = pix.image_to_cartesian(flow, col, row)
    xp0 = x - t*ux
    yp0 = y - t*uy
    xp1 = x + t*ux
    yp1 = y + t*uy
    (xi0, yi0) = pix.cartesian_to_index(flow, xp0, yp0)
    (xi1, yi1) = pix.cartesian_to_index(flow, xp1, yp1)
    if (pix.check_indices(flow, xi0, yi0) and
        pix.check_indices(flow, xi1, yi1)):
        f0vis = imask[row][col][0]
        f1vis = imask[row][col][1]
        if f0vis >= 1 and f1vis >= 1:
            dest[row][col] = (f0[yi0][xi0])/2 + (f1[yi1][xi1])/2
        elif f1vis >= 1:
            dest[row][col] = f1[yi1][xi1]
        else:
            dest[row][col] = f0[yi0][xi0]
Example #2
0
def find_occlusion(forward, backward, interp, imask, row, col, t=0.5):
    h = interp.shape[0]
    w = interp.shape[1]
    im = interp[row][col]
    ux = im[0]/w
    uy = -im[1]/h
    (x, y) = pix.image_to_cartesian(interp, col, row)
    xp0 = x - t*ux
    yp0 = y - t*uy
    xp1 = x + t*ux
    yp1 = y + t*uy
    # Get each motion vector
    (xi0, yi0) = pix.cartesian_to_index(forward, xp0, yp0)
    (xi1, yi1) = pix.cartesian_to_index(backward, xp1, yp1)
    if (pix.check_indices(forward, xi0, yi0) and
        pix.check_indices(backward, xi1, yi1)):

        fvec = forward[yi0][xi0]
        bvec = -1*backward[yi1][xi1]
        
        d0 = pix.flowdist(fvec, im)
        d1 = pix.flowdist(bvec, im)
        diff = abs(d0-d1)

        if d0 <= d1:
            imask[row][col][0] = 1
            if diff < 0.1:
                imask[row][col][1] = 1
        else:
            imask[row][col][1] = 1
            if diff < 0.1:
                imask[row][col][0] = 1
    else:
        # Default to using first frame
        imask[row][col][0] = 1
Example #3
0
def find_occlusion(forward, backward, interp, imask, row, col, t=0.5):
    h = interp.shape[0]
    w = interp.shape[1]
    im = interp[row][col]
    ux = im[0] / w
    uy = -im[1] / h
    (x, y) = pix.image_to_cartesian(interp, col, row)
    xp0 = x - t * ux
    yp0 = y - t * uy
    xp1 = x + t * ux
    yp1 = y + t * uy
    # Get each motion vector
    (xi0, yi0) = pix.cartesian_to_index(forward, xp0, yp0)
    (xi1, yi1) = pix.cartesian_to_index(backward, xp1, yp1)
    if (pix.check_indices(forward, xi0, yi0)
            and pix.check_indices(backward, xi1, yi1)):

        fvec = forward[yi0][xi0]
        bvec = -1 * backward[yi1][xi1]

        d0 = pix.flowdist(fvec, im)
        d1 = pix.flowdist(bvec, im)
        diff = abs(d0 - d1)

        if d0 <= d1:
            imask[row][col][0] = 1
            if diff < 0.1:
                imask[row][col][1] = 1
        else:
            imask[row][col][1] = 1
            if diff < 0.1:
                imask[row][col][0] = 1
    else:
        # Default to using first frame
        imask[row][col][0] = 1
Example #4
0
def masked_transfer_color(f0, f1, dest, flow, imask, row, col, t=0.5):
    """ Find and set the transfer color for pixel [row][cow] """
    # for now, just defauly to using the value at f1:
    h = dest.shape[0]
    w = dest.shape[1]
    u = flow[row][col]
    ux = u[0] / w
    uy = -u[1] / h
    (x, y) = pix.image_to_cartesian(flow, col, row)
    xp0 = x - t * ux
    yp0 = y - t * uy
    xp1 = x + t * ux
    yp1 = y + t * uy
    (xi0, yi0) = pix.cartesian_to_index(flow, xp0, yp0)
    (xi1, yi1) = pix.cartesian_to_index(flow, xp1, yp1)
    if (pix.check_indices(flow, xi0, yi0)
            and pix.check_indices(flow, xi1, yi1)):
        f0vis = imask[row][col][0]
        f1vis = imask[row][col][1]
        if f0vis >= 1 and f1vis >= 1:
            dest[row][col] = (f0[yi0][xi0]) / 2 + (f1[yi1][xi1]) / 2
        elif f1vis >= 1:
            dest[row][col] = f1[yi1][xi1]
        else:
            dest[row][col] = f0[yi0][xi0]
Example #5
0
def find_occlusion(forward, backward, interp, imask, row, col, t=0.5):
    im = interp[row][col]
    xp0 = col - t * im[0] + 0.5
    yp0 = row - t * im[1] + 0.5
    xp1 = im[0] + xp0
    yp1 = im[1] + yp0
    # Get each motion vector
    xi0 = int(xp0)
    yi0 = int(yp0)
    xi1 = int(xp1)
    yi1 = int(yp1)
    if (pix.check_indices(forward, xi0, yi0)
            and pix.check_indices(backward, xi1, yi1)):

        fvec = forward[yi0][xi0]
        bvec = -backward[yi1][xi1]

        d0 = pix.flowdist(fvec, im)
        d1 = pix.flowdist(bvec, im)
        diff = abs(d0 - d1)

        if diff < 0.1:
            imask[row][col][:] = 1
        else:
            if d0 <= d1:
                imask[row][col][0] = 1
            else:
                imask[row][col][1] = 1
    else:
        # Default to using first frame
        imask[row][col][0] = 1
Example #6
0
def masked_transfer_color(f0, f1, forward, backward, interp, t=0.5):
    """ Find and set the transfer color for pixel [row][cow] """
    # for now, just defauly to using the value at f1:
    dest = np.copy(f0)
    h = dest.shape[0]
    w = dest.shape[1]
    for row in tqdm(range(h), position=True, desc="color transfer"):
        for col in range(w):
            u = interp[row][col]
            xp0 = col - t * u[0] + 0.5
            yp0 = row - t * u[1] + 0.5
            xp1 = u[0] + xp0
            yp1 = u[1] + yp0
            xi0 = int(xp0)
            yi0 = int(yp0)
            xi1 = int(xp1)
            yi1 = int(yp1)
            if (pix.check_indices(interp, xi0, yi0)
                    and pix.check_indices(interp, xi1, yi1)):

                fvec = forward[yi0][xi0]
                bvec = -backward[yi1][xi1]

                d0 = pix.flowdist(fvec, u)
                d1 = pix.flowdist(bvec, u)
                diff = abs(d0 - d1)
                if diff < 0.1:
                    dest[row][col] = (f0[yi0][xi0] + f1[yi1][xi1]) * 0.5
                elif d0 > d1:
                    dest[row][col] = f1[yi1][xi1]
                else:
                    dest[row][col] = f0[yi0][xi0]

    return dest
Example #7
0
def color_transfer_weighted(frame, flow0, flowt, dest,
                            row, col, ws, t=0.5):
    """ Transfer coloring using the Shiratori et al.
    weighted blending technique. In this case [row][col]
    refers to the f0 pixel, not the output pixel."""
    h = frame.shape[0]
    w = frame.shape[1]
     
    # Get the flow for previous timestwp
    q_flow = flow0[row][col]
    # Get the previous frame cartesian coords
    (qx, qy) = pix.image_to_cartesian(frame, col, row)
    
    ux = q_flow[0]/w
    uy = -q_flow[1]/h

    # These are the target coordinates in the interpolated
    # image. We need to find all frames within 0.5 pixels
    # of this spot
    px = qx + t*ux
    py = qy + t*uy
    
    # These are the indices of all the target pixels. We will
    # add to each one...
    ipixels = pix.splat(dest, px, py)
    if ipixels:
        for p in ipixels:
            if (pix.check_indices(dest, p[0], p[1])):
                p_flow = flowt[p[1]][p[0]]
                r = pix.flowdist(p_flow, q_flow)
                add_weighted_color(frame[row][col], p, dest,
                                   px, py, ws, r, t=0.5)
Example #8
0
def transfer_color(f0, f1, dest, flow, row, col, t=0.5):
    """ Find and set the transfer color for pixel [row][cow] """
    # for now, just defauly to using the value at f1:
    h = dest.shape[0]
    w = dest.shape[1]
    u = flow[row][col]
    ux = u[0]
    uy = u[1]
    xp0 = col - t * ux
    yp0 = row - t * uy
    xp1 = col + (1 - t) * ux
    yp1 = row + (1 - t) * uy
    xi0 = int(round(xp0))
    yi0 = int(round(yp0))
    xi1 = int(round(xp1))
    yi1 = int(round(yp1))
    if (pix.check_indices(flow, xi0, yi0)
            and pix.check_indices(flow, xi1, yi1)):
        #dest[row][col] = (f0[yi0][xi0])/2 + (f1[yi1][xi1])/2
        dest[row][col] = f0[yi0][xi0]
Example #9
0
def find_occlusions(forward, backward, interp, t=0.5):
    """ Generate the occlusion mask for the interpolated frame. """
    h = interp.shape[0]
    w = interp.shape[1]
    imask = np.zeros((h, w, 2), dtype='uint8')
    # Default to using first frame
    imask[:, :, 0] = 1
    for row in tqdm(range(h), position=True, desc="generating occlusion mask"):
        for col in range(w):
            im = interp[row][col]
            xp0 = col - t * im[0] + 0.5
            yp0 = row - t * im[1] + 0.5
            xp1 = im[0] + xp0
            yp1 = im[1] + yp0
            # Get each motion vector
            xi0 = int(xp0)
            yi0 = int(yp0)
            xi1 = int(xp1)
            yi1 = int(yp1)
            if (pix.check_indices(forward, xi0, yi0)
                    and pix.check_indices(backward, xi1, yi1)):

                fvec = forward[yi0][xi0]
                bvec = -backward[yi1][xi1]

                d0 = pix.flowdist(fvec, im)
                d1 = pix.flowdist(bvec, im)
                diff = abs(d0 - d1)

                if diff < 0.1:
                    imask[row][col][1] = 1
                else:
                    if d0 > d1:
                        imask[row][col][0] = 0
                        imask[row][col][1] = 1

    return imask
Example #10
0
def color_transfer_weighted(frame, flow0, flowt, dest, row, col, ws, t=0.5):
    """ Transfer coloring using the Shiratori et al.
    weighted blending technique. In this case [row][col]
    refers to the f0 pixel, not the output pixel."""
    h = frame.shape[0]
    w = frame.shape[1]

    # Get the flow for previous timestwp
    q_flow = flow0[row][col]
    # Get the previous frame cartesian coords
    (qx, qy) = pix.image_to_cartesian(frame, col, row)

    ux = q_flow[0] / w
    uy = -q_flow[1] / h

    # These are the target coordinates in the interpolated
    # image. We need to find all frames within 0.5 pixels
    # of this spot
    px = qx + t * ux
    py = qy + t * uy

    # These are the indices of all the target pixels. We will
    # add to each one...
    ipixels = pix.splat(dest, px, py)
    if ipixels:
        for p in ipixels:
            if (pix.check_indices(dest, p[0], p[1])):
                p_flow = flowt[p[1]][p[0]]
                r = pix.flowdist(p_flow, q_flow)
                add_weighted_color(frame[row][col],
                                   p,
                                   dest,
                                   px,
                                   py,
                                   ws,
                                   r,
                                   t=0.5)