def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    sample = get_sample()
    simulation.setSample(sample)

    # the core method of this example which adds masks to the simulation
    add_mask_to_simulation(simulation)

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)
    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    # setting fitting parameters with starting values
    fit_suite.addFitParameter("*/Cylinder/Radius", 6. * nm).setLimited(4., 8.)
    fit_suite.addFitParameter("*/Cylinder/Height", 9. * nm).setLimited(8., 12.)

    # running fit
    fit_suite.runFit()

    print("Fitting completed.")
    fit_suite.printResults()
    print("chi2:", fit_suite.getChi2())
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
Example #2
0
def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    simulation.setSampleBuilder(MySampleBuilder())

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    # setting fitting parameters with starting values
    fit_suite.addFitParameter("*radius", 8. * nm,
                              ba.AttLimits.limited(4., 12.))
    fit_suite.addFitParameter("*lattice_constant", 8. * nm,
                              ba.AttLimits.limited(4., 12.))

    print(fit_suite.treeToString())
    print(fit_suite.parametersToString())

    # running fit
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
Example #3
0
def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    sample = get_sample()
    simulation.setSample(sample)

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    #fit_suite.setMinimizer("GSLLMA")
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    fit_suite.addFitParameter("*/FullSphere/Radius", 8. * nm,
                              ba.AttLimits.limited(4., 12.))
    fit_suite.addFitParameter("*HexagonalLattice/LatticeLength", 8. * nm,
                              ba.AttLimits.limited(4., 12.))

    print(fit_suite.treeToString())
    print(fit_suite.parametersToString())

    # running fit
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
def run_fitting():
    simulation = create_simulation()
    sample_builder = MySampleBuilder()
    simulation.setSampleBuilder(sample_builder)

    real_data = load_exp_data()

    fit_suite = ba.FitSuite()
    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)
    fit_suite.initPrint(10)
    fit_suite.addSimulationAndRealData(simulation, real_data)
    print("1.8")

    # setting fitting parameters with starting values
    fit_suite.addFitParameter("*radius", 5.0 * ba.nm,
                              ba.AttLimits.limited(4.0, 6.0), 0.1 * ba.nm)
    fit_suite.addFitParameter("*sigma", 0.55, ba.AttLimits.limited(0.2, 0.8),
                              0.01 * ba.nm)
    fit_suite.addFitParameter("*distance", 27. * ba.nm,
                              ba.AttLimits.limited(20, 70), 0.1 * ba.nm)

    # set fit strategies
    # strategy1 = ba.AdjustMinimizerStrategy("Genetic")
    # fit_suite.addFitStrategy(strategy1)

    # Second fit strategy will use another algorithm.
    # It will use best parameters found from previous minimization round.
    # strategy2 = ba.AdjustMinimizerStrategy("Minuit2", "Migrad")
    # fit_suite.addFitStrategy(strategy2)

    # running fit
    fit_suite.runFit()

    plt.show()
def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    sample = get_sample()
    simulation.setSample(sample)

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    # setting fitting parameters with starting values
    # Here we select starting values being quite far from true values
    # to puzzle our minimizer's as much as possible
    fit_suite.addFitParameter("*Height", 1.*nm).setLimited(0.01, 30.)\
        .setStep(0.05*nm)
    fit_suite.addFitParameter("*Radius", 20.*nm).setLimited(0.01, 30.)\
        .setStep(0.05*nm)

    # Now we create first fig strategy which will run first minimization round
    # using the Genetic minimizer.
    # The Genetic minimizer is able to explore large parameter space
    # without being trapped by some local minima.
    strategy1 = ba.AdjustMinimizerStrategy("Genetic", "",
                                           "MaxIterations=2;RandomSeed=1")
    fit_suite.addFitStrategy(strategy1)

    # Second fit strategy will use another minimizer.
    # It starts from best parameters found in previous minimization
    # and then continues until fit converges.
    strategy2 = ba.AdjustMinimizerStrategy("Minuit2", "Migrad")
    fit_suite.addFitStrategy(strategy2)

    # running fit
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
Example #6
0
def run_fitting():
    """
    main function to run fitting
    """
    ax_values, real_data = create_real_data()
    axis = make_axis(ax_values)

    simulation = get_simulation(axis)
    sample = get_sample()
    simulation.setSample(sample)

    print(simulation.treeToString())
    print(simulation.parametersToString())

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10,
                                          SimulationType='Specular')
    fit_suite.attachObserver(draw_observer)

    fitPar = ba.FitParameter(5. * ba.nm,
                             ba.AttLimits.limited(1. * ba.nm, 7. * ba.nm))
    fitPar.setName("thickness")
    for odd in [1, 3, 5, 7,
                9]:  # adding patterns for all odd layers' thicknesses
        fitPar.addPattern("*" + str(odd) + "/Thickness*")
    fit_suite.addFitParameter(fitPar)

    strategy1 = ba.AdjustMinimizerStrategy("Minuit2", "Migrad",
                                           "Strategy=2;Tolerance=1e-5")
    fit_suite.addFitStrategy(strategy1)

    # prints defined fit parameters and their relation to instrument parameters
    print(fit_suite.setupToString())

    # running fit
    print("Starting the fitting")
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
Example #7
0
def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    sample = get_sample()
    simulation.setSample(sample)

    print(simulation.treeToString())
    print(simulation.parametersToString())

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)
    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    # this fit parameter fits 4 sample parameter with one value
    fit_suite.addFitParameter("*Lattice/LatticeLength*", 9.*nm).\
        setLimited(6., 10.).addPattern("*Cylinder/Radius").\
        addPattern("*Cylinder/Height").setName("custom_length")

    # alternatively, following syntax is possible
    # fitPar = ba.FitParameter(10.*nm, ba.AttLimits.limited(4., 12.))
    # fitPar.setName("custom_length")
    # fitPar.addPattern("*Lattice/LatticeLength*")
    # fitPar.addPattern("*Cylinder/Radius").addPattern("*Cylinder/Height")
    # fit_suite.addFitParameter(fitPar)

    # prints defined fit parameters and their relation to instrument parameters
    print(fit_suite.setupToString())

    # running fit
    print("Starting the fitting")
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
Example #8
0
def run_fitting():
    """
    main function to run fitting
    """
    simulation = get_simulation()
    sample = get_sample()

    simulation.setSample(sample)

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)

    chiModule = ba.ChiSquaredModule()
    chiModule.setIntensityNormalizer(ba.IntensityScaleAndShiftNormalizer())
    fit_suite.setChiSquaredModule(chiModule)

    fit_suite.initPrint(10)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    # print all defined parameters for sample and simulation
    print(fit_suite.parametersToString())

    # setting fitting parameters with starting values
    fit_suite.addFitParameter("*/Cylinder/Radius", 6. * nm,
                              ba.AttLimits.limited(4., 8.))
    fit_suite.addFitParameter("*/Cylinder/Height", 9. * nm,
                              ba.AttLimits.limited(8., 12.))
    fit_suite.addFitParameter("*/Normalizer/scale", 1.5,
                              ba.AttLimits.limited(1.0, 3.0))
    fit_suite.addFitParameter("*/Normalizer/shift", 50.,
                              ba.AttLimits.limited(1, 500.))

    # running fit
    fit_suite.runFit()

    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())
def run_fitting():
    """
    Setup simulation and fit
    """

    sample = get_sample()
    simulation = get_simulation()
    simulation.setSample(sample)

    real_data = create_real_data()

    fit_suite = ba.FitSuite()
    fit_suite.addSimulationAndRealData(simulation, real_data)

    # fit_suite.setMinimizer("Minuit2", "Migrad")  # ba.Default
    # fit_suite.setMinimizer("Minuit2", "Fumili")
    # fit_suite.setMinimizer("GSLLMA")

    fit_suite.initPrint(10)

    # setting fitting parameters with starting values
    fit_suite.addFitParameter("*Cylinder/Height",
                              4. * nm).setLowerLimited(0.01)
    fit_suite.addFitParameter("*Cylinder/Radius",
                              6. * nm).setLowerLimited(0.01)
    fit_suite.addFitParameter("*Prism3/Height", 4. * nm).setLowerLimited(0.01)
    fit_suite.addFitParameter("*Prism3/BaseEdge",
                              12. * nm).setLowerLimited(0.01)

    draw_observer = ba.DefaultFitObserver(draw_every_nth=10)
    fit_suite.attachObserver(draw_observer)

    fit_suite.runFit()
    print("Fitting completed.")
    print("chi2:", fit_suite.getChi2())
    for fitPar in fit_suite.fitParameters():
        print(fitPar.name(), fitPar.value(), fitPar.error())

    return fit_suite