Example #1
0
 def test_identity_mc_multi_output_objective(self):
     objective = IdentityMCMultiOutputObjective()
     with self.assertRaises(BotorchTensorDimensionError):
         IdentityMCMultiOutputObjective(outcomes=[0])
     # test negative outcome without specifying num_outcomes
     with self.assertRaises(BotorchError):
         IdentityMCMultiOutputObjective(outcomes=[0, -1])
     for batch_shape, m, dtype in itertools.product(
         ([], [3]), (2, 3), (torch.float, torch.double)):
         samples = torch.rand(*batch_shape,
                              2,
                              m,
                              device=self.device,
                              dtype=dtype)
         self.assertTrue(torch.equal(objective(samples), samples))
Example #2
0
    def __init__(
        self,
        model: Model,
        sampler: Optional[MCSampler] = None,
        objective: Optional[MCMultiOutputObjective] = None,
        X_pending: Optional[Tensor] = None,
    ) -> None:
        r"""Constructor for the MCAcquisitionFunction base class.

        Args:
            model: A fitted model.
            sampler: The sampler used to draw base samples. Defaults to
                `SobolQMCNormalSampler(num_samples=128, collapse_batch_dims=True)`.
            objective: The MCMultiOutputObjective under which the samples are
                evaluated. Defaults to `IdentityMultiOutputObjective()`.
            X_pending:  A `m x d`-dim Tensor of `m` design points that have
                points that have been submitted for function evaluation
                but have not yet been evaluated.
        """
        super().__init__(model=model)
        if sampler is None:
            sampler = SobolQMCNormalSampler(num_samples=128,
                                            collapse_batch_dims=True)
        self.add_module("sampler", sampler)
        if objective is None:
            objective = IdentityMCMultiOutputObjective()
        elif not isinstance(objective, MCMultiOutputObjective):
            raise UnsupportedError(
                "Only objectives of type MCMultiOutputObjective are supported for "
                "Multi-Objective MC acquisition functions.")
        self.add_module("objective", objective)
        self.X_pending = None
        if X_pending is not None:
            self.set_X_pending(X_pending)
Example #3
0
 def test_identity_mc_multi_output_objective(self):
     objective = IdentityMCMultiOutputObjective()
     for batch_shape, m, dtype in itertools.product(
         ([], [3]), (2, 3), (torch.float, torch.double)):
         samples = torch.rand(*batch_shape,
                              2,
                              m,
                              device=self.device,
                              dtype=dtype)
         self.assertTrue(torch.equal(objective(samples), samples))
Example #4
0
def construct_inputs_qEHVI(
    model: Model,
    training_data: TrainingData,
    objective_thresholds: Tensor,
    objective: Optional[AcquisitionObjective] = None,
    **kwargs: Any,
) -> Dict[str, Any]:
    r"""Construct kwargs for `qExpectedHypervolumeImprovement` constructor."""
    X_observed = training_data.X

    # compute posterior mean (for ref point computation ref pareto frontier)
    with torch.no_grad():
        Y_pmean = model.posterior(X_observed).mean

    outcome_constraints = kwargs.pop("outcome_constraints", None)
    # For HV-based acquisition functions we pass the constraint transform directly
    if outcome_constraints is None:
        cons_tfs = None
    else:
        cons_tfs = get_outcome_constraint_transforms(outcome_constraints)
        # Adjust `Y_pmean` to contrain feasible points only.
        feas = torch.stack([c(Y_pmean) <= 0 for c in cons_tfs], dim=-1).all(dim=-1)
        Y_pmean = Y_pmean[feas]

    if objective is None:
        objective = IdentityMCMultiOutputObjective()

    ehvi_kwargs = construct_inputs_EHVI(
        model=model,
        training_data=training_data,
        objective_thresholds=objective_thresholds,
        objective=objective,
        # Pass `Y_pmean` that accounts for constraints to `construct_inputs_EHVI`
        # to ensure that correct non-dominated partitioning is produced.
        Y_pmean=Y_pmean,
        **kwargs,
    )

    sampler = kwargs.get("sampler")
    if sampler is None:
        sampler = _get_sampler(
            mc_samples=kwargs.get("mc_samples", 128), qmc=kwargs.get("qmc", True)
        )

    add_qehvi_kwargs = {
        "sampler": sampler,
        "X_pending": kwargs.get("X_pending"),
        "constraints": cons_tfs,
        "eta": kwargs.get("eta", 1e-3),
    }
    return {**ehvi_kwargs, **add_qehvi_kwargs}
Example #5
0
    def __init__(
        self,
        model: Model,
        sampler: Optional[MCSampler] = None,
        objective: Optional[MCMultiOutputObjective] = None,
        constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
        X_pending: Optional[Tensor] = None,
    ) -> None:
        r"""Constructor for the MCAcquisitionFunction base class.

        Args:
            model: A fitted model.
            sampler: The sampler used to draw base samples. Defaults to
                `SobolQMCNormalSampler(num_samples=128, collapse_batch_dims=True)`.
            objective: The MCMultiOutputObjective under which the samples are
                evaluated. Defaults to `IdentityMultiOutputObjective()`.
            constraints: A list of callables, each mapping a Tensor of dimension
                `sample_shape x batch-shape x q x m` to a Tensor of dimension
                `sample_shape x batch-shape x q`, where negative values imply
                feasibility.
            X_pending:  A `m x d`-dim Tensor of `m` design points that have
                points that have been submitted for function evaluation
                but have not yet been evaluated.
        """
        super().__init__(model=model)
        if sampler is None:
            sampler = SobolQMCNormalSampler(num_samples=128,
                                            collapse_batch_dims=True)
        self.add_module("sampler", sampler)
        if objective is None:
            objective = IdentityMCMultiOutputObjective()
        elif not isinstance(objective, MCMultiOutputObjective):
            raise UnsupportedError(
                "Only objectives of type MCMultiOutputObjective are supported for "
                "Multi-Objective MC acquisition functions.")
        if (hasattr(model, "input_transform")
                and isinstance(model.input_transform, InputPerturbation)
                and constraints is not None):
            raise UnsupportedError(
                "Constraints are not supported with input perturbations, due to"
                "sample q-batch shape being different than that of the inputs."
                "Use a composite objective that applies feasibility weighting to"
                "samples before calculating the risk measure.")
        self.add_module("objective", objective)
        self.constraints = constraints
        self.X_pending = None
        if X_pending is not None:
            self.set_X_pending(X_pending)
Example #6
0
 def test_init(self):
     mm = MockModel(MockPosterior(mean=torch.rand(2, 1)))
     # test default init
     acqf = DummyMultiObjectiveAnalyticAcquisitionFunction(model=mm)
     self.assertIsInstance(acqf.objective,
                           IdentityAnalyticMultiOutputObjective)
     # test custom init
     objective = DummyAnalyticMultiOutputObjective()
     acqf = DummyMultiObjectiveAnalyticAcquisitionFunction(
         model=mm, objective=objective)
     self.assertEqual(acqf.objective, objective)
     # test unsupported objective
     with self.assertRaises(UnsupportedError):
         DummyMultiObjectiveAnalyticAcquisitionFunction(
             model=mm, objective=IdentityMCMultiOutputObjective())
     acqf = DummyMultiObjectiveAnalyticAcquisitionFunction(model=mm)
     # test set_X_pending
     with self.assertRaises(UnsupportedError):
         acqf.set_X_pending()
Example #7
0
def construct_inputs_qNEHVI(
    model: Model,
    training_data: TrainingData,
    objective_thresholds: Tensor,
    objective: Optional[AcquisitionObjective] = None,
    **kwargs: Any,
) -> Dict[str, Any]:
    r"""Construct kwargs for `qNoisyExpectedHypervolumeImprovement` constructor."""
    # This selects the objectives (a subset of the outcomes) and set each
    # objective threhsold to have the proper optimization direction.
    if objective is None:
        objective = IdentityMCMultiOutputObjective()

    outcome_constraints = kwargs.pop("outcome_constraints", None)
    if outcome_constraints is None:
        cons_tfs = None
    else:
        cons_tfs = get_outcome_constraint_transforms(outcome_constraints)

    sampler = kwargs.get("sampler")
    if sampler is None:
        sampler = _get_sampler(
            mc_samples=kwargs.get("mc_samples", 128), qmc=kwargs.get("qmc", True)
        )

    return {
        "model": model,
        "ref_point": objective(objective_thresholds),
        "X_baseline": kwargs.get("X_baseline", training_data.X),
        "sampler": sampler,
        "objective": objective,
        "constraints": cons_tfs,
        "X_pending": kwargs.get("X_pending"),
        "eta": kwargs.get("eta", 1e-3),
        "prune_baseline": kwargs.get("prune_baseline", True),
        "alpha": kwargs.get("alpha", 0.0),
        "cache_pending": kwargs.get("cache_pending", True),
        "max_iep": kwargs.get("max_iep", 0),
        "incremental_nehvi": kwargs.get("incremental_nehvi", True),
    }
Example #8
0
    def test_q_expected_hypervolume_improvement(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            ref_point = [0.0, 0.0]
            tkwargs["dtype"] = dtype
            pareto_Y = torch.tensor(
                [[4.0, 5.0], [5.0, 5.0], [8.5, 3.5], [8.5, 3.0], [9.0, 1.0]],
                **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=2)
            # the event shape is `b x q x m` = 1 x 1 x 2
            samples = torch.zeros(1, 1, 2, **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            # test error if there is not pareto_Y initialized in partitioning
            with self.assertRaises(BotorchError):
                qExpectedHypervolumeImprovement(model=mm,
                                                ref_point=ref_point,
                                                partitioning=partitioning)
            partitioning.update(Y=pareto_Y)
            # test error if ref point has wrong shape
            with self.assertRaises(ValueError):
                qExpectedHypervolumeImprovement(model=mm,
                                                ref_point=ref_point[:1],
                                                partitioning=partitioning)

            X = torch.zeros(1, 1, **tkwargs)
            # basic test
            sampler = IIDNormalSampler(num_samples=1)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            # check ref point
            self.assertTrue(
                torch.equal(acqf.ref_point, torch.tensor(ref_point,
                                                         **tkwargs)))
            # check cached indices
            self.assertTrue(hasattr(acqf, "q_subset_indices"))
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0]], device=self.device),
                ))

            # test q=2
            X2 = torch.zeros(2, 1, **tkwargs)
            samples2 = torch.zeros(1, 2, 2, **tkwargs)
            mm2 = MockModel(MockPosterior(samples=samples2))
            acqf.model = mm2
            res = acqf(X2)
            self.assertEqual(res.item(), 0.0)
            # check cached indices
            self.assertTrue(hasattr(acqf, "q_subset_indices"))
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0], [1]], device=self.device),
                ))
            self.assertIn("q_choose_2", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_2"],
                    torch.tensor([[0, 1]], device=self.device),
                ))
            self.assertNotIn("q_choose_3", acqf.q_subset_indices)
            # now back to 1 and sure all caches were cleared
            acqf.model = mm
            res = acqf(X)
            self.assertNotIn("q_choose_2", acqf.q_subset_indices)
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0]], device=self.device),
                ))

            X = torch.zeros(1, 1, **tkwargs)
            samples = torch.zeros(1, 1, 2, **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))

            # basic test for X_pending and warning
            acqf.set_X_pending()
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(None)
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(X)
            self.assertEqual(acqf.X_pending, X)
            res = acqf(X)
            X2 = torch.zeros(1, 1, 1, requires_grad=True, **tkwargs)
            with warnings.catch_warnings(
                    record=True) as ws, settings.debug(True):
                acqf.set_X_pending(X2)
                self.assertEqual(acqf.X_pending, X2)
                self.assertEqual(len(ws), 1)
                self.assertTrue(issubclass(ws[-1].category, BotorchWarning))

            # test objective
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
                objective=IdentityMCMultiOutputObjective(),
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # Test that the hypervolume improvement is correct for given sample
            # test q = 1
            X = torch.zeros(1, 1, **tkwargs)
            # basic test
            samples = torch.tensor([[[6.5, 4.5]]], **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            sampler = IIDNormalSampler(num_samples=1)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 1.5)
            # test q = 1, does not contribute
            samples = torch.tensor([0.0, 1.0], **tkwargs).view(1, 1, 2)
            sampler = IIDNormalSampler(1)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test q = 2, both points contribute
            X = torch.zeros(2, 1, **tkwargs)
            samples = torch.tensor([[6.5, 4.5], [7.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 1.75)

            # test q = 2, only 1 point contributes
            samples = torch.tensor([[6.5, 4.5], [6.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 1.5)

            # test q = 2, neither contributes
            samples = torch.tensor([[2.0, 2.0], [0.0, 0.1]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test q = 2, test point better than current best second objective
            samples = torch.tensor([[6.5, 4.5], [6.0, 6.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 8.0)

            # test q = 2, test point better than current-best first objective
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 2.0)
            # test q = 3, all contribute
            X = torch.zeros(3, 1, **tkwargs)
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0], [7.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 2.25)
            # test q = 3, not all contribute
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0], [7.0, 5.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 3.5)
            # test q = 3, none contribute
            samples = torch.tensor([[0.0, 4.5], [1.0, 2.0], [3.0, 0.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test m = 3, q=1
            pareto_Y = torch.tensor(
                [[4.0, 2.0, 3.0], [3.0, 5.0, 1.0], [2.0, 4.0, 2.0],
                 [1.0, 3.0, 4.0]],
                **tkwargs,
            )
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            samples = torch.tensor([[1.0, 2.0, 6.0]], **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            ref_point = [-1.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            X = torch.zeros(1, 2, **tkwargs)
            res = acqf(X)
            self.assertEqual(res.item(), 12.0)

            # change reference point
            ref_point = [0.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 4.0)

            # test m = 3, no contribution
            ref_point = [1.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test m = 3, q = 2
            pareto_Y = torch.tensor(
                [[4.0, 2.0, 3.0], [3.0, 5.0, 1.0], [2.0, 4.0, 2.0]], **tkwargs)
            samples = torch.tensor([[1.0, 2.0, 6.0], [1.0, 3.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            ref_point = [-1.0] * 3
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            X = torch.zeros(2, 2, **tkwargs)
            res = acqf(X)
            self.assertEqual(res.item(), 22.0)
Example #9
0
def qehvi_candidates_func(
    train_x: "torch.Tensor",
    train_obj: "torch.Tensor",
    train_con: Optional["torch.Tensor"],
    bounds: "torch.Tensor",
) -> "torch.Tensor":
    """Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

    The default value of ``candidates_func`` in :class:`~optuna.integration.BoTorchSampler`
    with multi-objective optimization when the number of objectives is three or less.

    .. seealso::
        :func:`~optuna.integration.botorch.qei_candidates_func` for argument and return value
        descriptions.
    """

    n_objectives = train_obj.size(-1)

    if train_con is not None:
        train_y = torch.cat([train_obj, train_con], dim=-1)

        is_feas = (train_con <= 0).all(dim=-1)
        train_obj_feas = train_obj[is_feas]

        constraints = []
        n_constraints = train_con.size(1)

        for i in range(n_constraints):
            constraints.append(lambda Z, i=i: Z[..., -n_constraints + i])
        additional_qehvi_kwargs = {
            "objective":
            IdentityMCMultiOutputObjective(outcomes=list(range(n_objectives))),
            "constraints":
            constraints,
        }
    else:
        train_y = train_obj

        train_obj_feas = train_obj

        additional_qehvi_kwargs = {}

    train_x = normalize(train_x, bounds=bounds)

    model = SingleTaskGP(train_x,
                         train_y,
                         outcome_transform=Standardize(m=train_y.shape[-1]))
    mll = ExactMarginalLogLikelihood(model.likelihood, model)
    fit_gpytorch_model(mll)

    # Approximate box decomposition similar to Ax when the number of objectives is large.
    # https://github.com/facebook/Ax/blob/master/ax/models/torch/botorch_moo_defaults
    if n_objectives > 2:
        alpha = 10**(-8 + n_objectives)
    else:
        alpha = 0.0
    partitioning = NondominatedPartitioning(num_outcomes=n_objectives,
                                            Y=train_obj_feas,
                                            alpha=alpha)

    ref_point = train_obj.min(dim=0).values - 1e-8
    ref_point_list = ref_point.tolist()

    acqf = qExpectedHypervolumeImprovement(
        model=model,
        ref_point=ref_point_list,
        partitioning=partitioning,
        sampler=SobolQMCNormalSampler(num_samples=256),
        **additional_qehvi_kwargs,
    )

    standard_bounds = torch.zeros_like(bounds)
    standard_bounds[1] = 1

    candidates, _ = optimize_acqf(
        acq_function=acqf,
        bounds=standard_bounds,
        q=1,
        num_restarts=20,
        raw_samples=1024,
        options={
            "batch_limit": 5,
            "maxiter": 200,
            "nonnegative": True
        },
        sequential=True,
    )

    candidates = unnormalize(candidates.detach(), bounds=bounds)

    return candidates
def evaluate(mth, run_i, seed):
    print(mth, run_i, seed, '===== start =====', flush=True)

    def objective_function(x: torch.Tensor):
        # Caution: unnormalize and maximize
        x = unnormalize(x, bounds=problem_bounds)
        x = x.cpu().numpy().astype(np.float64)  # caution
        res = problem.evaluate(x)
        res['objs'] = [-y for y in res['objs']]
        return res  # Caution: negative values imply feasibility in botorch

    hv_diffs = []
    time_list = []
    global_start_time = time.time()

    # random seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # call helper functions to generate initial training data and initialize model
    train_x, train_obj, train_con = generate_initial_data(
        initial_runs, objective_function, time_list, global_start_time)
    # fix bug: find feasible
    real_initial_runs = initial_runs
    while real_initial_runs < max_runs:
        # compute feasible observations
        is_feas = (train_con <= 0).all(dim=-1)
        # compute points that are better than the known reference point
        better_than_ref = (train_obj > problem.ref_point).all(dim=-1)
        if (is_feas & better_than_ref).any():
            break
        train_x, train_obj, train_con = expand_initial_data(
            train_x, train_obj, train_con, objective_function, time_list,
            global_start_time)
        real_initial_runs += 1
        print('=== Expand initial data to find feasible. Iter =',
              real_initial_runs)
    mll, model = initialize_model(train_x, train_obj, train_con)

    # for plot
    X_init = train_x.cpu().numpy().astype(np.float64)
    Y_init = -1 * train_obj.cpu().numpy().astype(np.float64)
    # calculate hypervolume of init data
    for i in range(real_initial_runs):
        train_obj_i = train_obj[:i + 1]
        train_con_i = train_con[:i + 1]
        # compute pareto front
        is_feas_i = (train_con_i <= 0).all(dim=-1)
        feas_train_obj_i = train_obj_i[is_feas_i]
        pareto_mask = is_non_dominated(feas_train_obj_i)
        pareto_y = feas_train_obj_i[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

    # run (max_runs - real_initial_runs) rounds of BayesOpt after the initial random batch
    for iteration in range(real_initial_runs + 1, max_runs + 1):
        t0 = time.time()
        try:
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # compute feasible observations
            is_feas = (train_con <= 0).all(dim=-1)
            # compute points that are better than the known reference point
            better_than_ref = (train_obj > problem.ref_point).all(dim=-1)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs,
                # use observations that are better than the specified reference point and feasible
                Y=train_obj[better_than_ref & is_feas],
            )
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
                # define an objective that specifies which outcomes are the objectives
                objective=IdentityMCMultiOutputObjective(
                    outcomes=list(range(problem.num_objs))),
                # specify that the constraint is on the last outcome
                constraints=constraint_callable_list(
                    problem.num_constraints, num_objs=problem.num_objs),
            )
            # optimize and get new observation
            new_x, new_obj, new_con = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
        except Exception as e:  # handle numeric problem
            step = 2
            print(
                '===== Exception in optimization loop, restart with 1/%d of training data: %s'
                % (step, str(e)))
            if refit == 1:
                mll, model = initialize_model(train_x[::step],
                                              train_obj[::step],
                                              train_con[::step])
            else:
                mll, model = initialize_model(
                    train_x[::step],
                    train_obj[::step],
                    train_con[::step],
                    model.state_dict(),
                )
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # compute feasible observations
            is_feas = (train_con[::step] <= 0).all(dim=-1)
            # compute points that are better than the known reference point
            better_than_ref = (train_obj[::step] > problem.ref_point).all(
                dim=-1)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs,
                # use observations that are better than the specified reference point and feasible
                Y=train_obj[::step][better_than_ref & is_feas],
            )
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
                # define an objective that specifies which outcomes are the objectives
                objective=IdentityMCMultiOutputObjective(
                    outcomes=list(range(problem.num_objs))),
                # specify that the constraint is on the last outcome
                constraints=constraint_callable_list(
                    problem.num_constraints, num_objs=problem.num_objs),
            )
            # optimize and get new observation
            new_x, new_obj, new_con = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
            assert len(time_list) == iteration

        # update training points
        train_x = torch.cat([train_x, new_x])
        train_obj = torch.cat([train_obj, new_obj])
        train_con = torch.cat([train_con, new_con])

        # update progress
        # compute pareto front
        is_feas = (train_con <= 0).all(dim=-1)
        feas_train_obj = train_obj[is_feas]
        pareto_mask = is_non_dominated(feas_train_obj)
        pareto_y = feas_train_obj[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

        # reinitialize the models so they are ready for fitting on next iteration
        # use the current state dict to speed up fitting
        # Note: they find improved performance from not warm starting the model hyperparameters
        # using the hyperparameters from the previous iteration
        if refit == 1:
            mll, model = initialize_model(train_x, train_obj, train_con)
        else:
            mll, model = initialize_model(
                train_x,
                train_obj,
                train_con,
                model.state_dict(),
            )

        t1 = time.time()
        print(
            "Iter %d: x=%s, perf=%s, con=%s, hv_diff=%f, time=%.2f, global_time=%.2f"
            % (iteration, unnormalize(new_x, bounds=problem_bounds), -new_obj,
               new_con, hv_diff, t1 - t0, time_list[-1]),
            flush=True)

    # compute pareto front
    is_feas = (train_con <= 0).all(dim=-1)
    feas_train_obj = train_obj[is_feas]
    pareto_mask = is_non_dominated(feas_train_obj)
    pareto_y = feas_train_obj[pareto_mask]
    pf = -1 * pareto_y.cpu().numpy().astype(np.float64)
    # Save result
    X = unnormalize(train_x, bounds=problem_bounds).cpu().numpy().astype(
        np.float64)  # caution
    train_obj[~is_feas] = -INFEASIBLE_OBJ_VALUE  # set infeasible
    Y = -1 * train_obj.cpu().numpy().astype(np.float64)

    # plot for debugging
    if plot_mode == 1:
        plot_pf(problem, problem_str, mth, pf, Y_init)

    return hv_diffs, pf, X, Y, time_list
Example #11
0
def prune_inferior_points_multi_objective(
    model: Model,
    X: Tensor,
    ref_point: Tensor,
    objective: Optional[MCMultiOutputObjective] = None,
    constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
    num_samples: int = 2048,
    max_frac: float = 1.0,
    marginalize_dim: Optional[int] = None,
) -> Tensor:
    r"""Prune points from an input tensor that are unlikely to be pareto optimal.

    Given a model, an objective, and an input tensor `X`, this function returns
    the subset of points in `X` that have some probability of being pareto
    optimal, better than the reference point, and feasible. This function uses
    sampling to estimate the probabilities, the higher the number of points `n`
    in `X` the higher the number of samples `num_samples` should be to obtain
    accurate estimates.

    Args:
        model: A fitted model. Batched models are currently not supported.
        X: An input tensor of shape `n x d`. Batched inputs are currently not
            supported.
        ref_point: The reference point.
        objective: The objective under which to evaluate the posterior.
        constraints: A list of callables, each mapping a Tensor of dimension
            `sample_shape x batch-shape x q x m` to a Tensor of dimension
            `sample_shape x batch-shape x q`, where negative values imply
            feasibility.
        num_samples: The number of samples used to compute empirical
            probabilities of being the best point.
        max_frac: The maximum fraction of points to retain. Must satisfy
            `0 < max_frac <= 1`. Ensures that the number of elements in the
            returned tensor does not exceed `ceil(max_frac * n)`.
        marginalize_dim: A batch dimension that should be marginalized.
            For example, this is useful when using a batched fully Bayesian
            model.

    Returns:
        A `n' x d` with subset of points in `X`, where

            n' = min(N_nz, ceil(max_frac * n))

        with `N_nz` the number of points in `X` that have non-zero (empirical,
        under `num_samples` samples) probability of being pareto optimal.
    """
    if X.ndim > 2:
        # TODO: support batched inputs (req. dealing with ragged tensors)
        raise UnsupportedError(
            "Batched inputs `X` are currently unsupported by "
            "prune_inferior_points_multi_objective")
    max_points = math.ceil(max_frac * X.size(-2))
    if max_points < 1 or max_points > X.size(-2):
        raise ValueError(f"max_frac must take values in (0, 1], is {max_frac}")
    with torch.no_grad():
        posterior = model.posterior(X=X)
    if posterior.event_shape.numel() > SobolEngine.MAXDIM:
        if settings.debug.on():
            warnings.warn(
                f"Sample dimension q*m={posterior.event_shape.numel()} exceeding Sobol "
                f"max dimension ({SobolEngine.MAXDIM}). Using iid samples instead.",
                SamplingWarning,
            )
        sampler = IIDNormalSampler(num_samples=num_samples)
    else:
        sampler = SobolQMCNormalSampler(num_samples=num_samples)
    samples = sampler(posterior)
    if objective is None:
        objective = IdentityMCMultiOutputObjective()
    obj_vals = objective(samples, X=X)
    if obj_vals.ndim > 3:
        if obj_vals.ndim == 4 and marginalize_dim is not None:
            obj_vals = obj_vals.mean(dim=marginalize_dim)
        else:
            # TODO: support batched inputs (req. dealing with ragged tensors)
            raise UnsupportedError(
                "Models with multiple batch dims are currently unsupported by"
                " prune_inferior_points_multi_objective.")
    if constraints is not None:
        infeas = torch.stack([c(samples) > 0 for c in constraints],
                             dim=0).any(dim=0)
        if infeas.ndim == 3 and marginalize_dim is not None:
            # make sure marginalize_dim is not negative
            if marginalize_dim < 0:
                # add 1 to the normalize marginalize_dim since we have already
                # removed the output dim
                marginalize_dim = (
                    1 + normalize_indices([marginalize_dim], d=infeas.ndim)[0])

            infeas = infeas.float().mean(dim=marginalize_dim).round().bool()
        # set infeasible points to be the ref point
        obj_vals[infeas] = ref_point
    pareto_mask = is_non_dominated(
        obj_vals, deduplicate=False) & (obj_vals > ref_point).all(dim=-1)
    probs = pareto_mask.to(dtype=X.dtype).mean(dim=0)
    idcs = probs.nonzero().view(-1)
    if idcs.shape[0] > max_points:
        counts, order_idcs = torch.sort(probs, descending=True)
        idcs = order_idcs[:max_points]

    return X[idcs]