Example #1
0
def run_first_stage(image, net, scale, threshold, gpu_id=0):
    """Run P-Net, generate bounding boxes, and do NMS.

    Arguments:
        image: an instance of PIL.Image.
        net: an instance of pytorch's nn.Module, P-Net.
        scale: a float number,
            scale width and height of the image by this number.
        threshold: a float number,
            threshold on the probability of a face when generating
            bounding boxes from predictions of the net.

    Returns:
        a float numpy array of shape [n_boxes, 9],
            bounding boxes with scores and offsets (4 + 1 + 4).
    """

    # scale the image and convert it to a float array
    width, height = image.size
    sw, sh = math.ceil(width * scale), math.ceil(height * scale)
    img = image.resize((sw, sh), Image.BILINEAR)
    img = np.asarray(img, 'float32')
    img = torch.FloatTensor(_preprocess(img)).to('cuda:%d' % gpu_id)
    output = net(img)
    probs = output[1].cpu().data.numpy()[0, 1, :, :]
    offsets = output[0].cpu().data.numpy()
    # probs: probability of a face at each sliding window
    # offsets: transformations to true bounding boxes

    boxes = _generate_bboxes(probs, offsets, scale, threshold)
    if len(boxes) == 0:
        return None

    keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
    return boxes[keep]
def run_first_stage(image, net, scale, threshold):
    """Run P-Net, generate bounding boxes, and do NMS.

    Arguments:
        image: an instance of PIL.Image.
        net: an instance of pytorch's nn.Module, P-Net.
        scale: a float number,
            scale width and height of the image by this number.
        threshold: a float number,
            threshold on the probability of a face when generating
            bounding boxes from predictions of the net.

    Returns:
        a float numpy array of shape [n_boxes, 9],
            bounding boxes with scores and offsets (4 + 1 + 4).
    """

    # scale the image and convert it to a float array
    width, height = image.size
    sw, sh = math.ceil(width*scale), math.ceil(height*scale)
    img = image.resize((sw, sh), Image.BILINEAR)
    img = np.asarray(img, 'float32')

    img = Variable(torch.FloatTensor(_preprocess(img)), volatile = True)
    output = net(img)
    probs = output[1].data.numpy()[0, 1, :, :]
    offsets = output[0].data.numpy()
    # probs: probability of a face at each sliding window
    # offsets: transformations to true bounding boxes

    boxes = _generate_bboxes(probs, offsets, scale, threshold)
    if len(boxes) == 0:
        return None

    keep = nms(boxes[:, 0:5], overlap_threshold = 0.5)
    return boxes[keep]