Example #1
0
trial_times = trials.stimOn_times[incl_trials]
probability_left = trials.probabilityLeft[incl_trials]
trial_blocks = (trials.probabilityLeft[incl_trials] == 0.2).astype(int)

# Get clusters in this brain region
region_clusters = combine_layers_cortex(clusters[PROBE]['acronym'])
clusters_in_region = clusters[PROBE].metrics.cluster_id[region_clusters == REGION]

# Select spikes and clusters
spks_region = spikes[PROBE].times[np.isin(spikes[PROBE].clusters, clusters_in_region)]
clus_region = spikes[PROBE].clusters[np.isin(spikes[PROBE].clusters,
                                             clusters_in_region)]

# Decode block identity
decode_block = decode(spks_region, clus_region, trial_times, trial_blocks,
                      pre_time=PRE_TIME, post_time=POST_TIME,
                      classifier=DECODER, cross_validation='kfold-interleaved',
                      num_splits=5)

shuffle_block = decode(spks_region, clus_region, trial_times, trial_blocks,
                       pre_time=PRE_TIME, post_time=POST_TIME,
                       classifier=DECODER, cross_validation='kfold-interleaved',
                       num_splits=5, shuffle=True, iterations=ITERATIONS)

pseudo_block = decode(spks_region, clus_region, trial_times, trial_blocks,
                      pre_time=PRE_TIME, post_time=POST_TIME,
                      classifier=DECODER, cross_validation='kfold-interleaved',
                      num_splits=5, pseudo_blocks=True, iterations=ITERATIONS)

# %%
"""
figure_style()
Example #2
0
                print(
                    '%d out of %d drift neurons detected' %
                    (drift_neurons.shape[0], np.unique(clus_region).shape[0]))
                spks_region = spks_region[~np.isin(clus_region, drift_neurons)]
                clus_region = clus_region[~np.isin(clus_region, drift_neurons)]

            # Check if there are enough neurons in this brain region
            if np.unique(clus_region).shape[0] < MIN_NEURONS:
                continue

            # Decode
            decode_result = decode(spks_region,
                                   clus_region,
                                   trial_times,
                                   trial_ids,
                                   pre_time=PRE_TIME,
                                   post_time=POST_TIME,
                                   classifier=clf,
                                   cross_validation=VALIDATION,
                                   num_splits=NUM_SPLITS)

            # Estimate chance level
            if CHANCE_LEVEL == 'phase-rand':
                decode_chance = decode(spks_region,
                                       clus_region,
                                       trial_times,
                                       trial_ids,
                                       pre_time=PRE_TIME,
                                       post_time=POST_TIME,
                                       classifier=clf,
                                       cross_validation=VALIDATION,
Example #3
0
    # Select spikes and clusters
    spks_region = spikes[probe].times[np.isin(spikes[probe].clusters,
                                              clusters_in_region)]
    clus_region = spikes[probe].clusters[np.isin(spikes[probe].clusters,
                                                 clusters_in_region)]

    if len(spks_region) == 0:
        continue

    # Decode block identity
    decode_block = decode(spks_region,
                          clus_region,
                          trial_times,
                          trial_blocks,
                          pre_time=PRE_TIME,
                          post_time=POST_TIME,
                          classifier=DECODER,
                          cross_validation=VALIDATION,
                          num_splits=5)

    pseudo_block = decode(spks_region,
                          clus_region,
                          trial_times,
                          trial_blocks,
                          pre_time=PRE_TIME,
                          post_time=POST_TIME,
                          classifier=DECODER,
                          cross_validation=VALIDATION,
                          num_splits=5,
                          pseudo_blocks=True,
Example #4
0
                                                  region_clusters)]
        clus_region = spikes[probe].clusters[np.isin(spikes[probe].clusters,
                                                     region_clusters)]
        if len(region_clusters) <= N_NEURONS:
            continue

        # Decode over time
        decode_time = pd.DataFrame()
        shuffle_time = pd.DataFrame()
        for j, win_center in enumerate(WIN_CENTERS):
            print('Decoding window [%d of %d]' % (j + 1, WIN_CENTERS.shape[0]))
            decode_result = decode(spks_region,
                                   clus_region,
                                   stimon_times,
                                   stimon_blocks,
                                   pre_time=-win_center + (WIN_SIZE / 2),
                                   post_time=win_center + (WIN_SIZE / 2),
                                   classifier='bayes',
                                   cross_validation='kfold',
                                   n_neurons=N_NEURONS,
                                   iterations=ITERATIONS)
            decode_time = decode_time.append(pd.DataFrame({
                'f1':
                decode_result['f1'],
                'accuracy':
                decode_result['accuracy'] * 100,
                'auroc':
                decode_result['auroc'],
                'win_center':
                win_center,
                'session':
                '%s_%s' % (ses[i]['subject'], ses[i]['start_time'][:10])
Example #5
0
    spikes.clusters, clusters.metrics.cluster_id[clusters_to_use])]
spikes.clusters = spikes.clusters[np.isin(
    spikes.clusters, clusters.metrics.cluster_id[clusters_to_use])]
cluster_ids = clusters.metrics.cluster_id[clusters_to_use]

# %% Do decoding
print('Decoding whether the stimulus was on the left or the right..')

stim_times = trials.goCue_times
stim_sides = np.isnan(trials.contrastLeft).astype(int)

# Decode left vs right stimulus from a 1 second window after stimulus onset using default settings:
# Naive Bayes classifier with 5-fold cross-validation
decode_result = decode(spikes.times,
                       spikes.clusters,
                       stim_times,
                       stim_sides,
                       pre_time=0,
                       post_time=1)

# Get the accuracy over chance
print('\nNaive Bayes with 5-fold cross-validation')
print('Performance: %.2f%% correct [chance level: %.2f%%]' %
      (decode_result['accuracy'] * 100,
       ((stim_sides.sum() / stim_sides.shape[0]) * 100)))

# Decode stimulus side using a subset of 50 random neurons drawn 300 times
decode_result = decode(spikes.times,
                       spikes.clusters,
                       stim_times,
                       stim_sides,
                       pre_time=0,
Example #6
0
region_clusters = combine_layers_cortex(clusters[PROBE]['acronym'])
clusters_in_region = clusters[PROBE].metrics.cluster_id[region_clusters ==
                                                        REGION]

# Select spikes and clusters
spks_region = spikes[PROBE].times[np.isin(spikes[PROBE].clusters,
                                          clusters_in_region)]
clus_region = spikes[PROBE].clusters[np.isin(spikes[PROBE].clusters,
                                             clusters_in_region)]

# Decode block identity
decode_5fold = decode(spks_region,
                      clus_region,
                      trial_times,
                      trial_blocks,
                      pre_time=PRE_TIME,
                      post_time=POST_TIME,
                      classifier=DECODER,
                      cross_validation='kfold',
                      num_splits=5)

shuffle_5fold = decode(spks_region,
                       clus_region,
                       trial_times,
                       trial_blocks,
                       pre_time=PRE_TIME,
                       post_time=POST_TIME,
                       classifier=DECODER,
                       cross_validation='kfold',
                       num_splits=5,
                       shuffle=True,
spikes.clusters = spikes.clusters[np.isin(
        spikes.clusters, clusters.metrics.cluster_id[
                            clusters.metrics.ks2_label == 'good'])]
clusters.channels = clusters.channels[clusters.metrics.ks2_label == 'good']
clusters.depths = clusters.depths[clusters.metrics.ks2_label == 'good']
cluster_ids = clusters.metrics.cluster_id[clusters.metrics.ks2_label == 'good']

# Get trial vectors
incl_trials = (trials.probabilityLeft > 0.55) | (trials.probabilityLeft < 0.45)
trial_times = trials.goCue_times[incl_trials]
probability_left = trials.probabilityLeft[incl_trials]
trial_blocks = (trials.probabilityLeft[incl_trials] > 0.55).astype(int)

# Decode block identity
bayes_kfold = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                     pre_time=PRE_TIME, post_time=POST_TIME,
                     classifier='bayes', cross_validation='kfold')
bayes_block = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                     pre_time=PRE_TIME, post_time=POST_TIME,
                     classifier='bayes', cross_validation='block', prob_left=probability_left)
bayes_loo = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                   pre_time=PRE_TIME, post_time=POST_TIME,
                   classifier='bayes', cross_validation='leave-one-out')
forest_kfold = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                      pre_time=PRE_TIME, post_time=POST_TIME,
                      classifier='forest', cross_validation='kfold')
forest_block = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                      pre_time=PRE_TIME, post_time=POST_TIME,
                      classifier='forest', cross_validation='block', prob_left=probability_left)
forest_loo = decode(spikes.times, spikes.clusters, trial_times, trial_blocks,
                    pre_time=PRE_TIME, post_time=POST_TIME,
Example #8
0
for i, n_neurons in enumerate(N_NEURONS):
    print('Decoding from groups of %d neurons [%d of %d]' %
          (n_neurons, i + 1, len(N_NEURONS)))
    for j in range(N_NEURON_PICK):

        # Subselect neurons
        use_neurons = np.random.choice(clusters_in_region,
                                       n_neurons,
                                       replace=False)

        # Decode
        decode_result = decode(spks_region[np.isin(clus_region, use_neurons)],
                               clus_region[np.isin(clus_region, use_neurons)],
                               trial_times,
                               trial_ids,
                               pre_time=PRE_TIME,
                               post_time=POST_TIME,
                               classifier=DECODER,
                               cross_validation=VALIDATION,
                               num_splits=NUM_SPLITS)
        decode_subselects = decode_subselects.append(
            pd.DataFrame(index=[decode_subselects.shape[0] + 1],
                         data={
                             'accuracy': decode_result['accuracy'],
                             'null': 'Original',
                             'n_neurons': n_neurons
                         }))
        if CHANCE_LEVEL == 'shuffle':
            decode_chance = decode(spks_region[np.isin(clus_region,
                                                       use_neurons)],
                                   clus_region[np.isin(clus_region,