def test_mask_brain(): # Inputs for generate_signal dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[4, 4, 4]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(dimensions, mask_self=None,) brain = volume * mask assert np.sum(brain != 0) == np.sum(volume != 0), "Masking did not work" assert brain[0, 0, 0] == 0, "Masking did not work" assert brain[4, 4, 4] != 0, "Masking did not work" feature_coordinates = np.array( [[1, 1, 1]]) volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(dimensions, mask_self=None, ) brain = volume * mask assert np.sum(brain != 0) < np.sum(volume != 0), "Masking did not work" # Test that you can load the default dimensions = np.array([100, 100, 100]) mask, template = sim.mask_brain(dimensions, mask_self=False) assert mask[20, 80, 50] == 0, 'Masking didn''t work' assert mask[25, 80, 50] == 1, 'Masking didn''t work' assert int(template[25, 80, 50] * 100) == 57, 'Template not correct' # Check that you can mask self mask_self, template_self = sim.mask_brain(template, mask_self=True) assert (template_self - template).sum() < 1e2, 'Mask self error' assert (mask_self - mask).sum() == 0, 'Mask self error'
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = { 'auto_reg_sigma': 0.6, 'drift_sigma': 0.4, 'snr': 30, 'sfnr': 30, 'max_activity': 1000, 'fwhm': 4, } # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) # Mask the volume to be the same shape as a brain mask, template = sim.mask_brain(dimensions_tr, mask_threshold=0.2) stimfunction_tr = stimfunction[::int(tr_duration * 100)] noise = sim.generate_noise( dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, ) # Check that noise_system is being calculated correctly spatial_sd = 5 temporal_sd = 5 noise_system = sim._generate_noise_system(dimensions_tr, spatial_sd, temporal_sd) precision = abs(noise_system[0, 0, 0, :].std() - spatial_sd) assert precision < spatial_sd, 'noise_system calculated incorrectly' precision = abs(noise_system[:, :, :, 0].std() - temporal_sd) assert precision < spatial_sd, 'noise_system calculated incorrectly' # Calculate the noise nd_calc = sim.calc_noise(volume=noise, mask=mask) # How precise are these estimates precision = abs(nd_calc['snr'] - nd_orig['snr']) assert precision < nd_orig['snr'], 'snr calculated incorrectly' precision = abs(nd_calc['sfnr'] - nd_orig['sfnr']) assert precision < nd_orig['sfnr'], 'sfnr calculated incorrectly'
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = {'auto_reg_sigma': 0.6, 'drift_sigma': 0.4, 'snr': 30, 'sfnr': 30, 'max_activity': 1000, 'fwhm': 4, } # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) # Mask the volume to be the same shape as a brain mask, template = sim.mask_brain(dimensions_tr, mask_threshold=0.2) stimfunction_tr = stimfunction[::int(tr_duration * 100)] noise = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, ) # Check that noise_system is being calculated correctly spatial_sd = 5 temporal_sd = 5 noise_system = sim._generate_noise_system(dimensions_tr, spatial_sd, temporal_sd) precision = abs(noise_system[0, 0, 0, :].std() - spatial_sd) assert precision < spatial_sd, 'noise_system calculated incorrectly' precision = abs(noise_system[:, :, :, 0].std() - temporal_sd) assert precision < spatial_sd, 'noise_system calculated incorrectly' # Calculate the noise nd_calc = sim.calc_noise(volume=noise, mask=mask) # How precise are these estimates precision = abs(nd_calc['snr'] - nd_orig['snr']) assert precision < nd_orig['snr'], 'snr calculated incorrectly' precision = abs(nd_calc['sfnr'] - nd_orig['sfnr']) assert precision < nd_orig['sfnr'], 'sfnr calculated incorrectly'
def test_mask_brain(): # Inputs for generate_signal dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array([[4, 4, 4]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal( dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask = sim.mask_brain(volume)[:, :, :, 0] brain = volume * (mask > 0) assert np.sum(brain != 0) == np.sum(volume != 0), "Masking did not work" assert brain[0, 0, 0] == 0, "Masking did not work" assert brain[4, 4, 4] != 0, "Masking did not work" feature_coordinates = np.array([[1, 1, 1]]) volume = sim.generate_signal( dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask = sim.mask_brain(volume)[:, :, :, 0] brain = volume * (mask > 0) assert np.sum(brain != 0) < np.sum(volume != 0), "Masking did not work"
def test_mask_brain(): # Inputs for generate_signal dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[4, 4, 4]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(volume) brain = volume * mask assert np.sum(brain != 0) == np.sum(volume != 0), "Masking did not work" assert brain[0, 0, 0] == 0, "Masking did not work" assert brain[4, 4, 4] != 0, "Masking did not work" feature_coordinates = np.array( [[1, 1, 1]]) volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Mask the volume to be the same shape as a brain mask, _ = sim.mask_brain(volume) brain = volume * mask assert np.sum(brain != 0) < np.sum(volume != 0), "Masking did not work"
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = { 'auto_reg_sigma': 1, 'drift_sigma': 0.5, 'overall': 0.1, 'snr': 30, 'spatial_sigma': 0.15, 'system_sigma': 1, } # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) # Mask the volume to be the same shape as a brain mask = sim.mask_brain(dimensions_tr) noise = sim.generate_noise( dimensions=dimensions_tr[0:3], stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, noise_dict=nd_orig, ) # Calculate the noise nd_calc = sim.calc_noise(noise, mask) assert abs(nd_calc['overall'] - nd_orig['overall']) < 0.1, 'overall ' \ 'calculated ' \ 'incorrectly' assert abs(nd_calc['snr'] - nd_orig['snr']) < 10, 'snr calculated ' \ 'incorrectly' assert abs(nd_calc['system_sigma'] - nd_orig['system_sigma']) < 1, \ 'snr calculated incorrectly'
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = { 'auto_reg_sigma': 0.6, 'drift_sigma': 0.4, 'temporal_noise': 5, 'sfnr': 30, 'max_activity': 1000, 'fwhm': 4, } # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) # Mask the volume to be the same shape as a brain mask = sim.mask_brain(dimensions_tr) stimfunction_tr = stimfunction[::int(tr_duration * 1000)] noise = sim.generate_noise( dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, noise_dict=nd_orig, ) # Calculate the noise nd_calc = sim.calc_noise(noise, mask) # How precise are these estimates precision = abs(nd_calc['temporal_noise'] - nd_orig['temporal_noise']) assert precision < 1, 'temporal_noise calculated incorrectly' precision = abs(nd_calc['sfnr'] - nd_orig['sfnr']) assert precision < 5, 'sfnr calculated incorrectly'
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = {'auto_reg_sigma': 1, 'drift_sigma': 0.5, 'overall': 0.1, 'snr': 30, 'spatial_sigma': 0.15, 'system_sigma': 1, } # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) # Mask the volume to be the same shape as a brain mask = sim.mask_brain(dimensions_tr) noise = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, noise_dict=nd_orig, ) # Calculate the noise nd_calc = sim.calc_noise(noise, mask) assert abs(nd_calc['overall'] - nd_orig['overall']) < 0.1, 'overall ' \ 'calculated ' \ 'incorrectly' assert abs(nd_calc['snr'] - nd_orig['snr']) < 10, 'snr calculated ' \ 'incorrectly' assert abs(nd_calc['system_sigma'] - nd_orig['system_sigma']) < 1, \ 'snr calculated incorrectly'
def get_MNI152_template(dim_x, dim_y, dim_z): """get MNI152 template used in fmrisim Parameters ---------- dim_x: int dim_y: int dim_z: int - dims set the size of the volume we want to create Return ------- MNI_152_template: 3d array (dim_x, dim_y, dim_z) """ # Import the fmrisim from BrainIAK import brainiak.utils.fmrisim as sim # Make a grey matter mask into a 3d volume of a given size dimensions = np.asarray([dim_x, dim_y, dim_z]) _, MNI_152_template = sim.mask_brain(dimensions) return MNI_152_template
def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_signal=volume, ) # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_threshold=0.1) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" assert len(np.unique(template) > 2), "Template creation did not work" stimfunction_tr = stimfunction[::int(tr_duration * 100)] # Create the noise volumes (using the default parameters) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" assert np.std(signal) < np.std(noise), "Noise was not created" noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={'sfnr': 10000, 'snr': 10000}, ) system_noise = np.std(noise[mask > 0], 1).mean() assert system_noise <= 0.1, "Noise strength could not be manipulated"
# Set up stimulus event time course parameters event_duration = 15 # How long is each event isi = 5 # What is the time between each event # Specify signal magnitude parameters signal_change = 10 # How much change is there in intensity for the max of the patterns across participants multivariate_pattern = 1 # Do you want the signal to be a z scored pattern across voxels (1) or a univariate increase (0) print('Load template of average voxel value') template_nii = image.load_img(os.path.join(dat_dir, 'sub_template.nii.gz')) template = template_nii.get_fdata() dimensions = np.array(template.shape[0:3]) print('Create binary mask and normalize the template range') mask, template = sim.mask_brain(volume=template, mask_self=True) mask_cherry = image.load_img( os.path.join(dat_dir, 'cherry_pick_brain_mask.nii.gz')).get_fdata() # Load the noise dictionary print('Loading noise parameters') with open(os.path.join(dat_dir, 'sub_noise_dict.txt'), 'r') as f: noise_dict = f.read() noise_dict = eval(noise_dict) noise_dict['matched'] = 0 # ------------------------ # Cherry pick 1000 voxels # ------------------------ #brain_index = np.where(mask == 1) #brain_coordinates = np.array([[x for x in brain_index[0]], [x for x in brain_index[1]], [x for x in brain_index[2]]])
# Multiply the HRF timecourse with the signal signal_cond = sim.apply_signal(signal_function=signal_function, volume_static=volume_static, ) # Concatenate all the signal and function files if cond == 0: stimfunction = stimfunction_cond signal = signal_cond else: stimfunction = list(np.add(stimfunction, stimfunction_cond)) signal += signal_cond # Generate the mask of the signal mask = sim.mask_brain(signal) # Mask the signal to the shape of a brain (does not attenuate signal according # to grey matter likelihood) signal *= mask > 0 # Iterate through the participants and store participants epochs = [] for participantcounter in range(1, participants + 1): # Add the epoch cube epochs += [epoch] # Save a file name savename = directory + 'p' + str(participantcounter) + '.nii'
def generate_data(cfgFile): cfg = loadConfigFile(cfgFile) frame = inspect.currentframe() moduleFile = typing.cast(str, frame.f_code.co_filename) # type: ignore moduleDir = os.path.dirname(moduleFile) cfgDate = parser.parse(cfg.session.date).strftime("%Y%m%d") dataDir = os.path.join( cfg.session.dataDir, "subject{}/day{}".format(cfg.session.subjectNum, cfg.session.subjectDay)) imgDir = os.path.join( cfg.session.imgDir, "{}.{}.{}".format(cfgDate, cfg.session.subjectName, cfg.session.subjectName)) if os.path.exists(dataDir) and os.path.exists(imgDir): print( "output data and imgage directory already exist, skippig data generation" ) return runPatterns = [ 'patternsdesign_1_20180101T000000.mat', 'patternsdesign_2_20180101T000000.mat', 'patternsdesign_3_20180101T000000.mat' ] template_filename = os.path.join(moduleDir, 'sub_template.nii.gz') noise_dict_filename = os.path.join(moduleDir, 'sub_noise_dict.txt') roiA_filename = os.path.join(moduleDir, 'ROI_A.nii.gz') roiB_filename = os.path.join(moduleDir, 'ROI_B.nii.gz') output_file_pattern = '001_0000{}_000{}.mat' if not os.path.exists(imgDir): os.makedirs(imgDir) if not os.path.exists(dataDir): os.makedirs(dataDir) print('Load data') template_nii = nibabel.load(template_filename) template = template_nii.get_data() # dimsize = template_nii.header.get_zooms() roiA_nii = nibabel.load(roiA_filename) roiB_nii = nibabel.load(roiB_filename) roiA = roiA_nii.get_data() roiB = roiB_nii.get_data() dimensions = np.array(template.shape[0:3]) # What is the size of the brain print('Create mask') # Generate the continuous mask from the voxels mask, template = sim.mask_brain( volume=template, mask_self=True, ) # Write out the mask as matlab mask_uint8 = mask.astype(np.uint8) maskfilename = os.path.join( dataDir, 'mask_{}_{}.mat'.format(cfg.session.subjectNum, cfg.session.subjectDay)) sio.savemat(maskfilename, {'mask': mask_uint8}) # Load the noise dictionary with open(noise_dict_filename, 'r') as f: noise_dict = f.read() print('Loading ' + noise_dict_filename) noise_dict = eval(noise_dict) noise_dict['matched'] = 0 runNum = 1 scanNum = 0 for patfile in runPatterns: fullPatfile = os.path.join(moduleDir, patfile) # make dataDir run directory runDir = os.path.join(dataDir, "run{}".format(runNum)) if not os.path.exists(runDir): os.makedirs(runDir) shutil.copy(fullPatfile, runDir) runNum += 1 pat = sio.loadmat(fullPatfile) scanNum += 1 # shifted labels are in regressor field shiftedLabels = pat['patterns']['regressor'][0][0] # non-shifted labels are in attCateg field and whether stimulus applied in the stim field nsLabels = pat['patterns']['attCateg'][0][0] * pat['patterns']['stim'][ 0][0] labels_A = (nsLabels == 1).astype(int) labels_B = (nsLabels == 2).astype(int) # trialType = pat['patterns']['type'][0][0] tr_duration = pat['TR'][0][0] disdaqs = pat['disdaqs'][0][0] begTrOffset = disdaqs // tr_duration nTRs = pat['nTRs'][0][0] # nTestTRs = np.count_nonzero(trialType == 2) # Preset some of the parameters total_trs = nTRs + begTrOffset # How many time points are there? print('Generating data') start = time.time() noiseVols = sim.generate_noise( dimensions=dimensions, stimfunction_tr=np.zeros((total_trs, 1)), tr_duration=int(tr_duration), template=template, mask=mask, noise_dict=noise_dict, ) print("Time: generate noise vols {} sec".format(time.time() - start)) nVoxelsA = int(roiA.sum()) nVoxelsB = int(roiB.sum()) # Multiply each pattern by each voxel time course weights_A = np.tile(labels_A.reshape(-1, 1), nVoxelsA) weights_B = np.tile(labels_B.reshape(-1, 1), nVoxelsB) print('Creating signal time course') signal_func_A = sim.convolve_hrf( stimfunction=weights_A, tr_duration=tr_duration, temporal_resolution=(1 / tr_duration), scale_function=1, ) signal_func_B = sim.convolve_hrf( stimfunction=weights_B, tr_duration=tr_duration, temporal_resolution=(1 / tr_duration), scale_function=1, ) max_activity = noise_dict['max_activity'] signal_change = 10 # .01 * max_activity signal_func_A *= signal_change signal_func_B *= signal_change # Combine the signal time course with the signal volume print('Creating signal volumes') signal_A = sim.apply_signal( signal_func_A, roiA, ) signal_B = sim.apply_signal( signal_func_B, roiB, ) # Combine the two signal timecourses signal = signal_A + signal_B # testTrId = 0 numVols = noiseVols.shape[3] for idx in range(numVols): start = time.time() brain = noiseVols[:, :, :, idx] if idx >= begTrOffset: # some initial scans are skipped as only instructions and not stimulus are shown signalIdx = idx - begTrOffset brain += signal[:, :, :, signalIdx] # TODO: how to create a varying combined percentage of A and B signals # if trialType[0][idx] == 1: # # training TR, so create pure A or B signal # if labels_A[idx] != 0: # brain = brain + roiA # elif labels_B[idx] != 0: # brain = brain + roiB # elif trialType[0][idx] == 2: # # testing TR, so create a mixture of A and B signal # testTrId += 1 # testPercent = testTrId / nTestTRs # brain = brain + testPercent * roiA + (1-testPercent) * roiB # Save the volume as a matlab file filenum = idx + 1 filename = output_file_pattern.format( str(scanNum).zfill(2), str(filenum).zfill(3)) outputfile = os.path.join(imgDir, filename) brain_float32 = brain.astype(np.float32) sio.savemat(outputfile, {'vol': brain_float32}) print("Time: generate vol {}: {} sec".format( filenum, time.time() - start))
def generate_data(outputDir, user_settings): """Generate simulated fMRI data Use a few parameters that might be relevant for real time analysis Parameters ---------- outputDir : str Specify output data dir where the data should be saved user_settings : dict A dictionary to specify the parameters used for making data, specifying the following keys numTRs - int - Specify the number of time points multivariate_patterns - bool - Is the difference between conditions univariate (0) or multivariate (1) different_ROIs - bool - Are there different ROIs for each condition ( 1) or is it in the same ROI (0). If it is the same ROI and you are using univariate differences, the second condition will have a smaller evoked response than the other. event_duration - int - How long, in seconds, is each event scale_percentage - float - What is the percent signal change trDuration - float - How many seconds per volume save_dicom - bool - Save to data as a dicom (1) or numpy (0) save_realtime - bool - Do you want to save the data in real time (1) or as fast as possible (0)? isi - float - What is the time between each event (in seconds) burn_in - int - How long before the first event (in seconds) """ data_dict = default_settings.copy() data_dict.update(user_settings) # If the folder doesn't exist then make it os.system('mkdir -p %s' % outputDir) logger.info('Load template of average voxel value') # Get the file names needed for loading in the data ROI_A_file, ROI_B_file, template_path, noise_dict_file = \ _get_input_names(data_dict) # Load in the template data (it may already be loaded if doing a test) if isinstance(template_path, str): template_nii = nibabel.load(template_path) template = template_nii.get_data() else: template = template_path dimensions = np.array(template.shape[0:3]) logger.info('Create binary mask and normalize the template range') mask, template = sim.mask_brain( volume=template, mask_self=True, ) # Write out the mask as a numpy file outFile = os.path.join(outputDir, 'mask.npy') np.save(outFile, mask.astype(np.uint8)) # Load the noise dictionary logger.info('Loading noise parameters') # If this isn't a string, assume it is a resource stream file if type(noise_dict_file) is str: with open(noise_dict_file, 'r') as f: noise_dict = f.read() else: # Read the resource stream object noise_dict = noise_dict_file.decode() noise_dict = eval(noise_dict) noise_dict['matched'] = 0 # Increases processing time # Add it here for easy access data_dict['noise_dict'] = noise_dict logger.info('Generating noise') temp_stimfunction = np.zeros((data_dict['numTRs'], 1)) noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=temp_stimfunction, tr_duration=int(data_dict['trDuration']), template=template, mask=mask, noise_dict=noise_dict, ) # Create the stimulus time course of the conditions total_time = int(data_dict['numTRs'] * data_dict['trDuration']) onsets_A = [] onsets_B = [] curr_time = data_dict['burn_in'] while curr_time < (total_time - data_dict['event_duration']): # Flip a coin for each epoch to determine whether it is A or B if np.random.randint(0, 2) == 1: onsets_A.append(curr_time) else: onsets_B.append(curr_time) # Increment the current time curr_time += data_dict['event_duration'] + data_dict['isi'] # How many timepoints per second of the stim function are to be generated? temporal_res = 1 / data_dict['trDuration'] # Create a time course of events event_durations = [data_dict['event_duration']] stimfunc_A = sim.generate_stimfunction( onsets=onsets_A, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) stimfunc_B = sim.generate_stimfunction( onsets=onsets_B, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) # Create a labels timecourse outFile = os.path.join(outputDir, 'labels.npy') np.save(outFile, (stimfunc_A + (stimfunc_B * 2))) # How is the signal implemented in the different ROIs signal_A = _generate_ROIs(ROI_A_file, stimfunc_A, noise, data_dict['scale_percentage'], data_dict) if data_dict['different_ROIs'] is True: signal_B = _generate_ROIs(ROI_B_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) else: # Halve the evoked response if these effects are both expected in the # same ROI if data_dict['multivariate_pattern'] is False: signal_B = _generate_ROIs(ROI_A_file, stimfunc_B, noise, data_dict['scale_percentage'] * 0.5, data_dict) else: signal_B = _generate_ROIs(ROI_A_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) # Combine the two signal timecourses signal = signal_A + signal_B logger.info('Generating TRs in real time') for idx in range(data_dict['numTRs']): # Create the brain volume on this TR brain = noise[:, :, :, idx] + signal[:, :, :, idx] # Convert file to integers to mimic what you get from MR brain_int32 = brain.astype(np.int32) # Store as dicom or nifti? if data_dict['save_dicom'] is True: # Save the volume as a DICOM file, with each TR as its own file output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.dcm') _write_dicom(output_file, brain_int32, idx + 1) else: # Save the volume as a numpy file, with each TR as its own file output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.npy') np.save(output_file, brain_int32) logger.info("Generate {}".format(output_file)) # Sleep until next TR if data_dict['save_realtime'] == 1: time.sleep(data_dict['trDuration'])
signal_A = sim.apply_signal(signal_function=signal_function_A, volume_static=volume_static_A, ) signal_B = sim.apply_signal(signal_function=signal_function_B, volume_static=volume_static_B, ) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) # Generate the mask of the signal mask = sim.mask_brain(signal) # Mask the signal to the shape of a brain (attenuates signal according to grey # matter likelihood) signal *= mask # Create the noise volumes (using the default parameters noise = sim.generate_noise(dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, ) # Combine the signal and the noise brain = signal + noise
volume_signal=volume_signal_A, ) signal_B = sim.apply_signal(signal_function=signal_function_B, volume_signal=volume_signal_B, ) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_threshold=0.2) # Mask the signal to the shape of a brain (attenuates signal according to grey # matter likelihood) signal *= mask.reshape(dimensions[0], dimensions[1], dimensions[2], 1) # Generate original noise dict for comparison later orig_noise_dict = sim._noise_dict_update({}) # Create the noise volumes (using the default parameters noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, template=template, noise_dict=orig_noise_dict,
def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.double_gamma_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_static=volume, ) # Generate the mask of the signal mask = sim.mask_brain(signal, mask_threshold=0.1) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" # Create the noise volumes (using the default parameters) noise = sim.generate_noise(dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" assert np.std(signal) < np.std(noise), "Noise was not created" noise = sim.generate_noise(dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, noise_dict={'overall': 0}, ) assert np.sum(noise) == 0, "Noise strength could not be manipulated" assert np.std(noise) == 0, "Noise strength could not be manipulated"
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 temporal_res = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = sim._noise_dict_update({}) # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, temporal_resolution=temporal_res, ) # Mask the volume to be the same shape as a brain mask, template = sim.mask_brain(dimensions_tr, mask_self=None) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] nd_orig['matched'] = 0 noise = sim.generate_noise( dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, ) # Check the spatial noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[50, 0]) # Calculate the noise parameters from this newly generated volume nd_new = sim.calc_noise(noise, mask, template) nd_matched = sim.calc_noise(noise_matched, mask, template) # Check the values are reasonable" assert nd_new['snr'] > 0, 'snr out of range' assert nd_new['sfnr'] > 0, 'sfnr out of range' assert nd_new['auto_reg_rho'][0] > 0, 'ar out of range' # Check that the dilation increases SNR no_dilation_snr = sim._calc_snr( noise_matched, mask, dilation=0, reference_tr=tr_duration, ) assert nd_new['snr'] > no_dilation_snr, "Dilation did not increase SNR" # Check that template size is in bounds with pytest.raises(ValueError): sim.calc_noise(noise, mask, template * 2) # Check that Mask is set is checked with pytest.raises(ValueError): sim.calc_noise(noise, None, template) # Check that it can deal with missing noise parameters temp_nd = sim.calc_noise(noise, mask, template, noise_dict={}) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' temp_nd = sim.calc_noise(noise, mask, template, noise_dict=None) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' # Check that the fitting worked snr_diff = abs(nd_orig['snr'] - nd_new['snr']) snr_diff_match = abs(nd_orig['snr'] - nd_matched['snr']) assert snr_diff > snr_diff_match, 'snr fit incorrectly' # Test that you can generate rician and exponential noise sim._generate_noise_system( dimensions_tr, 1, 1, spatial_noise_type='exponential', temporal_noise_type='rician', ) # Check the temporal noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[0, 50]) nd_matched = sim.calc_noise(noise_matched, mask, template) sfnr_diff = abs(nd_orig['sfnr'] - nd_new['sfnr']) sfnr_diff_match = abs(nd_orig['sfnr'] - nd_matched['sfnr']) assert sfnr_diff > sfnr_diff_match, 'sfnr fit incorrectly' ar1_diff = abs(nd_orig['auto_reg_rho'][0] - nd_new['auto_reg_rho'][0]) ar1_diff_match = abs(nd_orig['auto_reg_rho'][0] - nd_matched['auto_reg_rho'][0]) assert ar1_diff > ar1_diff_match, 'AR1 fit incorrectly' # Check that you can calculate ARMA for a single voxel vox = noise[5, 5, 5, :] arma = sim._calc_ARMA_noise( vox, None, sample_num=2, ) assert len(arma) == 2, "Two outputs not given by ARMA"
def test_calc_noise(): # Inputs for functions onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 temporal_res = 100 tr_number = int(np.floor(duration / tr_duration)) dimensions_tr = np.array([10, 10, 10, tr_number]) # Preset the noise dict nd_orig = sim._noise_dict_update({}) # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, temporal_resolution=temporal_res, ) # Mask the volume to be the same shape as a brain mask, template = sim.mask_brain(dimensions_tr, mask_self=None) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] nd_orig['matched'] = 0 noise = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, ) # Check the spatial noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[50, 0] ) # Calculate the noise parameters from this newly generated volume nd_new = sim.calc_noise(noise, mask, template) nd_matched = sim.calc_noise(noise_matched, mask, template) # Check the values are reasonable" assert nd_new['snr'] > 0, 'snr out of range' assert nd_new['sfnr'] > 0, 'sfnr out of range' assert nd_new['auto_reg_rho'][0] > 0, 'ar out of range' # Check that the dilation increases SNR no_dilation_snr = sim._calc_snr(noise_matched, mask, dilation=0, reference_tr=tr_duration, ) assert nd_new['snr'] > no_dilation_snr, "Dilation did not increase SNR" # Check that template size is in bounds with pytest.raises(ValueError): sim.calc_noise(noise, mask, template * 2) # Check that Mask is set is checked with pytest.raises(ValueError): sim.calc_noise(noise, None, template) # Check that it can deal with missing noise parameters temp_nd = sim.calc_noise(noise, mask, template, noise_dict={}) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' temp_nd = sim.calc_noise(noise, mask, template, noise_dict=None) assert temp_nd['voxel_size'][0] == 1, 'Default voxel size not set' # Check that the fitting worked snr_diff = abs(nd_orig['snr'] - nd_new['snr']) snr_diff_match = abs(nd_orig['snr'] - nd_matched['snr']) assert snr_diff > snr_diff_match, 'snr fit incorrectly' # Test that you can generate rician and exponential noise sim._generate_noise_system(dimensions_tr, 1, 1, spatial_noise_type='exponential', temporal_noise_type='rician', ) # Check the temporal noise match nd_orig['matched'] = 1 noise_matched = sim.generate_noise(dimensions=dimensions_tr[0:3], stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=nd_orig, iterations=[0, 50] ) nd_matched = sim.calc_noise(noise_matched, mask, template) sfnr_diff = abs(nd_orig['sfnr'] - nd_new['sfnr']) sfnr_diff_match = abs(nd_orig['sfnr'] - nd_matched['sfnr']) assert sfnr_diff > sfnr_diff_match, 'sfnr fit incorrectly' ar1_diff = abs(nd_orig['auto_reg_rho'][0] - nd_new['auto_reg_rho'][0]) ar1_diff_match = abs(nd_orig['auto_reg_rho'][0] - nd_matched[ 'auto_reg_rho'][0]) assert ar1_diff > ar1_diff_match, 'AR1 fit incorrectly' # Check that you can calculate ARMA for a single voxel vox = noise[5, 5, 5, :] arma = sim._calc_ARMA_noise(vox, None, sample_num=2, ) assert len(arma) == 2, "Two outputs not given by ARMA"
def test_apply_signal(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array([[5, 5, 5]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal( dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf( stimfunction=stimfunction, tr_duration=tr_duration, ) # Check that you can compute signal change appropriately # Preset a bunch of things stimfunction_tr = stimfunction[::int(tr_duration * 100)] mask, template = sim.mask_brain(dimensions, mask_self=False) noise_dict = sim._noise_dict_update({}) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0]) coords = feature_coordinates[0] noise_function_a = noise[coords[0], coords[1], coords[2], :] noise_function_a = noise_function_a.reshape(duration // tr_duration, 1) noise_function_b = noise[coords[0] + 1, coords[1], coords[2], :] noise_function_b = noise_function_b.reshape(duration // tr_duration, 1) # Create the calibrated signal with PSC method = 'PSC' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) sig_b = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [1.0], method, ) assert sig_b.max() / sig_a.max() == 2, 'PSC modulation failed' # Create the calibrated signal with SFNR method = 'SFNR' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / (noise_function_a.mean() / noise_dict['sfnr']) sig_b = sim.compute_signal_change( signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / (noise_function_b.mean() / noise_dict['sfnr']) assert scaled_b.max() / scaled_a.max() == 2, 'SFNR modulation failed' # Create the calibrated signal with CNR_Amp/Noise-SD method = 'CNR_Amp/Noise-SD' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / noise_function_a.std() sig_b = sim.compute_signal_change( signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / noise_function_b.std() assert scaled_b.max() / scaled_a.max() == 2, 'CNR_Amp modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Amp2/Noise-Var_dB' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.max() / noise_function_a.std()) sig_b = sim.compute_signal_change( signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.max() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR_Amp dB modulation failed' # Create the calibrated signal with CNR_Signal-SD/Noise-SD method = 'CNR_Signal-SD/Noise-SD' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a.std() / noise_function_a.std() sig_b = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [1.0], method, ) scaled_b = sig_b.std() / noise_function_a.std() assert (scaled_b / scaled_a) == 2, 'CNR signal modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Signal-Var/Noise-Var_dB' sig_a = sim.compute_signal_change( signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.std() / noise_function_a.std()) sig_b = sim.compute_signal_change( signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.std() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR signal dB modulation ' \ 'failed' # Convolve the HRF with the stimulus sequence signal = sim.apply_signal( signal_function=signal_function, volume_signal=volume, ) assert signal.shape == (dimensions[0], dimensions[1], dimensions[2], duration / tr_duration), "The output is the " \ "wrong size" signal = sim.apply_signal( signal_function=stimfunction, volume_signal=volume, ) assert np.any(signal == signal_magnitude), "The stimfunction is not binary" # Check that there is an error if the number of signal voxels doesn't # match the number of non zero brain voxels with pytest.raises(IndexError): sig_vox = (volume > 0).sum() vox_pattern = np.tile(stimfunction, (1, sig_vox - 1)) sim.apply_signal( signal_function=vox_pattern, volume_signal=volume, )
# Multiply the HRF timecourse with the signal signal_A = sim.apply_signal(signal_function=signal_function_A, volume_static=volume_static_A) signal_B = sim.apply_signal(signal_function=signal_function_B, volume_static=volume_static_B) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) # Create the noise volumes (using the default parameters noise = sim.generate_noise(dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration) # Combine the signal and the noise volume = signal + noise # Mask the volume to be the same shape as a brain brain = sim.mask_brain(volume) # Display the brain fig = plt.figure() for tr_counter in list(range(0, brain.shape[3])): # Get the axis to be plotted ax = sim.plot_brain(fig, brain[:, :, :, tr_counter], percentile=99.9) # Wait for an input logging.info(tr_counter) plt.pause(0.5)
def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_signal=volume, ) # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_self=None) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" assert len(np.unique(template) > 2), "Template creation did not work" stimfunction_tr = stimfunction[::int(tr_duration * 100)] # Create the noise volumes (using the default parameters) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, iterations=[1, 0], ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" noise_high = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={'sfnr': 50, 'snr': 25}, iterations=[1, 0], ) noise_low = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={'sfnr': 100, 'snr': 25}, iterations=[1, 0], ) system_high = np.std(noise_high[mask > 0], 1).mean() system_low = np.std(noise_low[mask > 0], 1).mean() assert system_low < system_high, "SFNR noise could not be manipulated" # Check that you check for the appropriate template values with pytest.raises(ValueError): sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template * 2, mask=mask, noise_dict={}, ) # Check that iterations does what it should sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=[0, 0], ) sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=None, ) # Test drift noise trs = 1000 period = 100 drift = sim._generate_noise_temporal_drift(trs, tr_duration, 'sine', period, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration)) max_freq = np.argmax(power) assert period_freq == max_freq, 'Max frequency is not where it should be' # Do the same but now with cosine basis functions, answer should be close drift = sim._generate_noise_temporal_drift(trs, tr_duration, 'discrete_cos', period, ) # Check that the appropriate frequency is peaky (may not be the max) power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration))[0][0] assert power[period_freq] > power[period_freq + 1], 'Power is low' assert power[period_freq] > power[period_freq - 1], 'Power is low' # Check it gives a warning if the duration is too short drift = sim._generate_noise_temporal_drift(50, tr_duration, 'discrete_cos', period, ) # Test physiological noise (using unrealistic parameters so that it's easy) timepoints = list(np.linspace(0, (trs - 1) * tr_duration, trs)) resp_freq = 0.2 heart_freq = 1.17 phys = sim._generate_noise_temporal_phys(timepoints, resp_freq, heart_freq, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(phys))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / (trs * tr_duration) peaks = (power > (power.mean() + power.std())) # Where are the peaks peak_freqs = freq[peaks] assert np.any(resp_freq == peak_freqs), 'Resp frequency not found' assert len(peak_freqs) == 2, 'Two peaks not found' # Test task noise sim._generate_noise_temporal_task(stimfunction_tr, motion_noise='gaussian', ) sim._generate_noise_temporal_task(stimfunction_tr, motion_noise='rician', ) # Test ARMA noise with pytest.raises(ValueError): noise_dict = {'fwhm': 4, 'auto_reg_rho': [1], 'ma_rho': [1, 1]} sim._generate_noise_temporal_autoregression(stimfunction_tr, noise_dict, dimensions, mask, ) # Generate spatial noise vol = sim._generate_noise_spatial(np.array([10, 10, 10, trs])) assert len(vol.shape) == 3, 'Volume was not reshaped to ignore TRs' # Switch some of the noise types on noise_dict = dict(physiological_sigma=1, drift_sigma=1, task_sigma=1, auto_reg_sigma=0) sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0], )
def test_apply_signal(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array( [[5, 5, 5]]) signal_magnitude = [30] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal(dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction(onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf(stimfunction=stimfunction, tr_duration=tr_duration, ) # Check that you can compute signal change appropriately # Preset a bunch of things stimfunction_tr = stimfunction[::int(tr_duration * 100)] mask, template = sim.mask_brain(dimensions, mask_self=False) noise_dict = sim._noise_dict_update({}) noise = sim.generate_noise(dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0] ) coords = feature_coordinates[0] noise_function_a = noise[coords[0], coords[1], coords[2], :] noise_function_a = noise_function_a.reshape(duration // tr_duration, 1) noise_function_b = noise[coords[0] + 1, coords[1], coords[2], :] noise_function_b = noise_function_b.reshape(duration // tr_duration, 1) # Create the calibrated signal with PSC method = 'PSC' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) sig_b = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [1.0], method, ) assert sig_b.max() / sig_a.max() == 2, 'PSC modulation failed' # Create the calibrated signal with SFNR method = 'SFNR' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / (noise_function_a.mean() / noise_dict['sfnr']) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / (noise_function_b.mean() / noise_dict['sfnr']) assert scaled_b.max() / scaled_a.max() == 2, 'SFNR modulation failed' # Create the calibrated signal with CNR_Amp/Noise-SD method = 'CNR_Amp/Noise-SD' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a / noise_function_a.std() sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = sig_b / noise_function_b.std() assert scaled_b.max() / scaled_a.max() == 2, 'CNR_Amp modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Amp2/Noise-Var_dB' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.max() / noise_function_a.std()) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.max() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR_Amp dB modulation failed' # Create the calibrated signal with CNR_Signal-SD/Noise-SD method = 'CNR_Signal-SD/Noise-SD' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = sig_a.std() / noise_function_a.std() sig_b = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [1.0], method, ) scaled_b = sig_b.std() / noise_function_a.std() assert (scaled_b / scaled_a) == 2, 'CNR signal modulation failed' # Create the calibrated signal with CNR_Amp/Noise-Var_dB method = 'CNR_Signal-Var/Noise-Var_dB' sig_a = sim.compute_signal_change(signal_function, noise_function_a, noise_dict, [0.5], method, ) scaled_a = np.log(sig_a.std() / noise_function_a.std()) sig_b = sim.compute_signal_change(signal_function, noise_function_b, noise_dict, [1.0], method, ) scaled_b = np.log(sig_b.std() / noise_function_b.std()) assert np.round(scaled_b / scaled_a) == 2, 'CNR signal dB modulation ' \ 'failed' # Convolve the HRF with the stimulus sequence signal = sim.apply_signal(signal_function=signal_function, volume_signal=volume, ) assert signal.shape == (dimensions[0], dimensions[1], dimensions[2], duration / tr_duration), "The output is the " \ "wrong size" signal = sim.apply_signal(signal_function=stimfunction, volume_signal=volume, ) assert np.any(signal == signal_magnitude), "The stimfunction is not binary" # Check that there is an error if the number of signal voxels doesn't # match the number of non zero brain voxels with pytest.raises(IndexError): sig_vox = (volume > 0).sum() vox_pattern = np.tile(stimfunction, (1, sig_vox - 1)) sim.apply_signal(signal_function=vox_pattern, volume_signal=volume, )
# Multiply the HRF timecourse with the signal signal_cond = sim.apply_signal(signal_function=signal_function, volume_signal=volume_signal, ) # Concatenate all the signal and function files if cond == 0: stimfunction = stimfunction_cond signal = signal_cond else: stimfunction = list(np.add(stimfunction, stimfunction_cond)) signal += signal_cond # Generate the mask of the signal mask, template = sim.mask_brain(signal) # Mask the signal to the shape of a brain (does not attenuate signal according # to grey matter likelihood) signal *= mask.reshape(dimensions[0], dimensions[1], dimensions[2], 1) # Downsample the stimulus function to generate it in TR time stimfunction_tr = stimfunction[::int(tr_duration * 1000)] # Iterate through the participants and store participants epochs = [] for participantcounter in range(1, participants + 1): # Add the epoch cube epochs += [epoch]
def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array([[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal( dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 100 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.double_gamma_hrf( stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal( signal_function=signal_function, volume_static=volume, ) # Generate the mask of the signal mask = sim.mask_brain(signal, mask_threshold=0.1) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" stimfunction_tr = stimfunction[::int(tr_duration * 1000)] # Create the noise volumes (using the default parameters) noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" assert np.std(signal) < np.std(noise), "Noise was not created" noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, noise_dict={ 'temporal_noise': 0, 'sfnr': 10000 }, ) temporal_noise = np.std(noise[mask[:, :, :, 0] > 0], 1).mean() assert temporal_noise <= 0.1, "Noise strength could not be manipulated"
) signal_B = sim.apply_signal( signal_function=signal_function_B, volume_signal=volume_signal_B, ) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_threshold=0.2) # Mask the signal to the shape of a brain (attenuates signal according to grey # matter likelihood) signal *= mask.reshape(dimensions[0], dimensions[1], dimensions[2], 1) # Generate original noise dict for comparison later orig_noise_dict = sim._noise_dict_update({}) # Create the noise volumes (using the default parameters noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, template=template,
) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) # Create the noise volumes (using the default parameters noise = sim.generate_noise( dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration, ) # Combine the signal and the noise volume = signal + noise # Mask the volume to be the same shape as a brain brain = sim.mask_brain(volume) # Display the brain fig = plt.figure() for tr_counter in list(range(0, brain.shape[3])): # Get the axis to be plotted ax = sim.plot_brain(fig, brain[:, :, :, tr_counter], percentile=99.9) # Wait for an input logging.info(tr_counter) plt.pause(0.5)
template_name = parameters_path + 'template/' + participant + '_r' + \ str(run_counter) + '.nii.gz' noise_dict_name = parameters_path + 'noise_dict/' + participant + '_r' + str(run_counter) + \ '.txt' nifti_save = simulated_data_path + 'nifti/' + participant + '_r' + str(run_counter)\ + effect_name + '.nii.gz' signal_func_save = './community_structure/plots/' + participant + '_r' +\ str(run_counter) + effect_name + '.eps' # Load the template (not yet scaled nii = nibabel.load(template_name) template = nii.get_data() # Takes a while # Create the mask and rescale the template mask, template = sim.mask_brain(template, mask_self=True, ) # Pull out the onsets for this participant (copy it so you don't alter it) onsets = copy.deepcopy(onsets_runs[run_counter - 1]) # What is the original max duration of the onsets max_duration_orig = np.max([np.max(onsets[x]) for x in range(onsets.size)]) max_duration_orig += 10 # Add some wiggle room # Do you want to randomise the onsets (so that the events do not have a # fixed order) if randomise_timing == 1: onsets = utils.randomise_timing(onsets, )
volume_static=volume_static_A, ) signal_B = sim.apply_signal( signal_function=signal_function_B, volume_static=volume_static_B, ) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) # Generate the mask of the signal mask = sim.mask_brain(signal) # Mask the signal to the shape of a brain (attenuates signal according to grey # matter likelihood) signal *= mask # Create the noise volumes (using the default parameters noise = sim.generate_noise( dimensions=dimensions, stimfunction=stimfunction, tr_duration=tr_duration, mask=mask, ) # Combine the signal and the noise brain = signal + noise
def generate_data(inputDir, outputDir, data_dict): # Generate simulated fMRI data with a few parameters that might be # relevant for real time analysis # inputDir - Specify input data dir where the parameters for fmrisim are # outputDir - Specify output data dir where the data should be saved # data_dict contains: # numTRs - Specify the number of time points # multivariate_patterns - Is the difference between conditions # univariate (0) or multivariate (1) # different_ROIs - Are there different ROIs for each condition (1) or # is it in the same ROI (0). If it is the same ROI and you are using # univariate differences, the second condition will have a smaller evoked # response than the other. # event_duration - How long, in seconds, is each event # scale_percentage - What is the percent signal change # trDuration - How many seconds per volume # save_dicom - Do you want to save data as a dicom (1) or numpy (0) # save_realtime - Do you want to save the data in real time (1) or as # fast as possible (0)? # isi - What is the time between each event (in seconds) # burn_in - How long before the first event (in seconds) # If the folder doesn't exist then make it if os.path.isdir(outputDir) is False: os.makedirs(outputDir, exist_ok=True) print('Load template of average voxel value') templateFile = os.path.join(inputDir, 'sub_template.nii.gz') template_nii = nibabel.load(templateFile) template = template_nii.get_data() dimensions = np.array(template.shape[0:3]) print('Create binary mask and normalize the template range') mask, template = sim.mask_brain( volume=template, mask_self=True, ) # Write out the mask as a numpy file outFile = os.path.join(outputDir, 'mask.npy') np.save(outFile, mask.astype(np.uint8)) # Load the noise dictionary print('Loading noise parameters') noiseFile = os.path.join(inputDir, 'sub_noise_dict.txt') with open(noiseFile, 'r') as f: noise_dict = f.read() noise_dict = eval(noise_dict) noise_dict['matched'] = 0 # Increases processing time # Add it here for easy access data_dict['noise_dict'] = data_dict print('Generating noise') temp_stimfunction = np.zeros((data_dict['numTRs'], 1)) noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=temp_stimfunction, tr_duration=int(data_dict['trDuration']), template=template, mask=mask, noise_dict=noise_dict, ) # Create the stimulus time course of the conditions total_time = int(data_dict['numTRs'] * data_dict['trDuration']) onsets_A = [] onsets_B = [] curr_time = data_dict['burn_in'] while curr_time < (total_time - data_dict['event_duration']): # Flip a coin for each epoch to determine whether it is A or B if np.random.randint(0, 2) == 1: onsets_A.append(curr_time) else: onsets_B.append(curr_time) # Increment the current time curr_time += data_dict['event_duration'] + data_dict['isi'] # How many timepoints per second of the stim function are to be generated? temporal_res = 1 / data_dict['trDuration'] # Create a time course of events event_durations = [data_dict['event_duration']] stimfunc_A = sim.generate_stimfunction( onsets=onsets_A, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) stimfunc_B = sim.generate_stimfunction( onsets=onsets_B, event_durations=event_durations, total_time=total_time, temporal_resolution=temporal_res, ) # Create a labels timecourse outFile = os.path.join(outputDir, 'labels.npy') np.save(outFile, (stimfunc_A + (stimfunc_B * 2))) roiA_file = os.path.join(inputDir, 'ROI_A.nii.gz') roiB_file = os.path.join(inputDir, 'ROI_B.nii.gz') # How is the signal implemented in the different ROIs signal_A = generate_ROIs(roiA_file, stimfunc_A, noise, data_dict['scale_percentage'], data_dict) if data_dict['different_ROIs'] is True: signal_B = generate_ROIs(roiB_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) else: # Halve the evoked response if these effects are both expected in the same ROI if data_dict['multivariate_pattern'] is False: signal_B = generate_ROIs(roiA_file, stimfunc_B, noise, data_dict['scale_percentage'] * 0.5, data_dict) else: signal_B = generate_ROIs(roiA_file, stimfunc_B, noise, data_dict['scale_percentage'], data_dict) # Combine the two signal timecourses signal = signal_A + signal_B print('Generating TRs in real time') for idx in range(data_dict['numTRs']): # Create the brain volume on this TR brain = noise[:, :, :, idx] + signal[:, :, :, idx] # Convert file to integers to mimic what you get from MR brain_int32 = brain.astype(np.int32) # Store as dicom or nifti? if data_dict['save_dicom'] is True: # Save the volume as a DICOM file, with each TR as its own file output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.dcm') write_dicom(output_file, brain_int32, idx + 1) else: # Save the volume as a numpy file, with each TR as its own file output_file = os.path.join(outputDir, 'rt_' + format(idx, '03d') + '.npy') np.save(output_file, brain_int32) print("Generate {}".format(output_file)) # Sleep until next TR if data_dict['save_realtime'] == 1: time.sleep(data_dict['trDuration'])
output_noise_dict_name = None if output_name == 'None' or output_name == '': output_name = None # How many TRs are there? nii = nibabel.load(input_name) dimsize = nii.header.get_zooms() tr_duration = dimsize[3] trs = nii.shape[3] real_brain = nii.get_data() dimensions = np.array(real_brain.shape[0:3]) # What is the size of the brain # Generate the continuous mask from the voxels mask, template = sim.mask_brain( volume=real_brain, mask_self=True, ) # Save the mask brain nii = nibabel.Nifti1Image(mask.astype('int16'), nii.affine) hdr = nii.header hdr.set_zooms((dimsize[0], dimsize[1], dimsize[2])) # Save the mask if the name is given if output_mask_name is not None: print('Saving ' + output_mask_name) nibabel.save(nii, output_mask_name) # Calculate the noise parameters if input_noise_dict_name is None or path.exists(input_noise_dict_name) == \ False:
def test_generate_noise(): dimensions = np.array([10, 10, 10]) # What is the size of the brain feature_size = [2] feature_type = ['cube'] feature_coordinates = np.array([[5, 5, 5]]) signal_magnitude = [1] # Generate a volume representing the location and quality of the signal volume = sim.generate_signal( dimensions=dimensions, feature_coordinates=feature_coordinates, feature_type=feature_type, feature_size=feature_size, signal_magnitude=signal_magnitude, ) # Inputs for generate_stimfunction onsets = [10, 30, 50, 70, 90] event_durations = [6] tr_duration = 2 duration = 200 # Create the time course for the signal to be generated stimfunction = sim.generate_stimfunction( onsets=onsets, event_durations=event_durations, total_time=duration, ) signal_function = sim.convolve_hrf( stimfunction=stimfunction, tr_duration=tr_duration, ) # Convolve the HRF with the stimulus sequence signal = sim.apply_signal( signal_function=signal_function, volume_signal=volume, ) # Generate the mask of the signal mask, template = sim.mask_brain(signal, mask_self=None) assert min(mask[mask > 0]) > 0.1, "Mask thresholding did not work" assert len(np.unique(template) > 2), "Template creation did not work" stimfunction_tr = stimfunction[::int(tr_duration * 100)] # Create the noise volumes (using the default parameters) noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, iterations=[1, 0], ) assert signal.shape == noise.shape, "The dimensions of signal and noise " \ "the same" noise_high = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={ 'sfnr': 50, 'snr': 25 }, iterations=[1, 0], ) noise_low = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={ 'sfnr': 100, 'snr': 25 }, iterations=[1, 0], ) system_high = np.std(noise_high[mask > 0], 1).mean() system_low = np.std(noise_low[mask > 0], 1).mean() assert system_low < system_high, "SFNR noise could not be manipulated" # Check that you check for the appropriate template values with pytest.raises(ValueError): sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template * 2, mask=mask, noise_dict={}, ) # Check that iterations does what it should sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=[0, 0], ) sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict={}, iterations=None, ) # Test drift noise trs = 1000 period = 100 drift = sim._generate_noise_temporal_drift( trs, tr_duration, 'sine', period, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration)) max_freq = np.argmax(power) assert period_freq == max_freq, 'Max frequency is not where it should be' # Do the same but now with cosine basis functions, answer should be close drift = sim._generate_noise_temporal_drift( trs, tr_duration, 'discrete_cos', period, ) # Check that the appropriate frequency is peaky (may not be the max) power = abs(np.fft.fft(drift))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / trs period_freq = np.where(freq == 1 / (period // tr_duration))[0][0] assert power[period_freq] > power[period_freq + 1], 'Power is low' assert power[period_freq] > power[period_freq - 1], 'Power is low' # Check it runs fine drift = sim._generate_noise_temporal_drift( 50, tr_duration, 'discrete_cos', period, ) # Check it runs fine drift = sim._generate_noise_temporal_drift( 300, tr_duration, 'cos_power_drop', period, ) # Check that when the TR is greater than the period it errors with pytest.raises(ValueError): sim._generate_noise_temporal_drift(30, 10, 'cos_power_drop', 5) # Test physiological noise (using unrealistic parameters so that it's easy) timepoints = list(np.linspace(0, (trs - 1) * tr_duration, trs)) resp_freq = 0.2 heart_freq = 1.17 phys = sim._generate_noise_temporal_phys( timepoints, resp_freq, heart_freq, ) # Check that the max frequency is the appropriate frequency power = abs(np.fft.fft(phys))[1:trs // 2] freq = np.linspace(1, trs // 2 - 1, trs // 2 - 1) / (trs * tr_duration) peaks = (power > (power.mean() + power.std())) # Where are the peaks peak_freqs = freq[peaks] assert np.any(resp_freq == peak_freqs), 'Resp frequency not found' assert len(peak_freqs) == 2, 'Two peaks not found' # Test task noise sim._generate_noise_temporal_task( stimfunction_tr, motion_noise='gaussian', ) sim._generate_noise_temporal_task( stimfunction_tr, motion_noise='rician', ) # Test ARMA noise with pytest.raises(ValueError): noise_dict = {'fwhm': 4, 'auto_reg_rho': [1], 'ma_rho': [1, 1]} sim._generate_noise_temporal_autoregression( stimfunction_tr, noise_dict, dimensions, mask, ) # Generate spatial noise vol = sim._generate_noise_spatial(np.array([10, 10, 10, trs])) assert len(vol.shape) == 3, 'Volume was not reshaped to ignore TRs' # Switch some of the noise types on noise_dict = dict(physiological_sigma=1, drift_sigma=1, task_sigma=1, auto_reg_sigma=0) sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, template=template, mask=mask, noise_dict=noise_dict, iterations=[0, 0], )
) signal_B = sim.apply_signal( signal_function=signal_function_B, volume_static=volume_static_B, ) # Combine the signals from the two conditions signal = signal_A + signal_B # Combine the stim functions stimfunction = list(np.add(stimfunction_A, stimfunction_B)) stimfunction_tr = stimfunction[::int(tr_duration * temporal_res)] # Generate the mask of the signal mask = sim.mask_brain(signal) # Mask the signal to the shape of a brain (attenuates signal according to grey # matter likelihood) signal *= mask # Generate original noise dict for comparison later orig_noise_dict = sim._noise_dict_update({}) # Create the noise volumes (using the default parameters noise = sim.generate_noise( dimensions=dimensions, stimfunction_tr=stimfunction_tr, tr_duration=tr_duration, mask=mask, noise_dict=orig_noise_dict,