Example #1
0
    def __init__(
        self,
        data,
        radius=10,
        color="salmon",
        alpha=1,
        show_injection=True,
        name=None,
    ):
        """
        Turns streamlines data to a mesh.
        :param data: pd.DataFrame with streamlines points data
        :param radius: float. Radius of the Tube mesh used to render streamlines
        :param color: str, name of the color to be used
        :param alpha: float, transparancy
        :param name: str, name of the actor.
        :param show_injection: bool. If true spheres mark the injection sites
        """
        logger.debug(f"Creating a streamlines actor")
        if isinstance(data, (str, Path)):
            data = pd.read_json(data)
        elif not isinstance(data, pd.DataFrame):
            raise TypeError("Input data should be a dataframe")

        self.radius = radius
        mesh = (
            self._make_mesh(data, show_injection=show_injection)
            .c(color)
            .alpha(alpha)
            .clean()
        )

        name = name or "Streamlines"
        Actor.__init__(self, mesh, name=name, br_class="Streamliness")
Example #2
0
    def __init__(self, data, name=None, colors="salmon", alpha=1, radius=20):
        """
            Creates an actor representing multiple points (more efficient than 
            creating many Point instances).

            :param data: np.ndarray, Nx3 array or path to .npy file with coords data
            :param radius: float
            :param color: str, or list of str with color names or hex codes
            :param alpha: float
            :param name: str, actor name
        """
        PointsBase.__init__(self)

        self.radius = radius
        self.colors = colors
        self.alpha = alpha
        self.name = name

        if isinstance(data, np.ndarray):
            mesh = self._from_numpy(data)
        elif isinstance(data, (str, Path)):
            mesh = self._from_file(data)
        else:  # pragma: no cover
            raise TypeError(  # pragma: no cover
                f"Input data should be either a numpy array or a file path, not: {_class_name(data)}"  # pragma: no cover
            )  # pragma: no cover

        Actor.__init__(self, mesh, name=self.name, br_class="Points")
Example #3
0
    def __init__(self, pos, root, color="powderblue", alpha=1, radius=350):
        """
        Cylinder class creates a cylinder mesh between a given
        point and the brain's surface.

        :param pos: list, np.array of ap, dv, ml coordinates.
            If an actor is passed, get's the center of mass instead
        :param root: brain root Actor or mesh object
        :param color: str, color
        :param alpha: float
        :param radius: float
        """

        # Get pos
        if isinstance(pos, Mesh):
            pos = pos.points().mean(axis=0)
        elif isinstance(pos, Actor):
            pos = pos.center
        logger.debug(f"Creating Cylinder actor at: {pos}")

        # Get point at top of cylinder
        top = pos.copy()
        top[1] = root.bounds()[2] - 500

        # Create mesh and Actor
        mesh = shapes.Cylinder(pos=[top, pos], c=color, r=radius, alpha=alpha)
        Actor.__init__(self, mesh, name="Cylinder", br_class="Cylinder")
Example #4
0
    def __init__(self, *args, ROIs=None, **kwargs):
        self.ROIs = ROIs or [
            (0, self.length),
        ]

        ProbeGeometry.__init__(self, *args, **kwargs)
        Actor.__init__(self, self.get_mesh(), name="Probe", br_class="Probe")
Example #5
0
    def __init__(self,
                 data,
                 name=None,
                 dims=(40, 40, 40),
                 radius=None,
                 **kwargs):
        """
            Creates a Volume actor showing the 3d density of a set 
            of points.

            :param data: np.ndarray, Nx3 array with cell coordinates


            from vedo:
                Generate a density field from a point cloud. Input can also be a set of 3D coordinates.
                Output is a ``Volume``.
                The local neighborhood is specified as the `radius` around each sample position (each voxel).
                The density is expressed as the number of counts in the radius search.

                :param int,list dims: numer of voxels in x, y and z of the output Volume.

        """
        volume = vPoints(data).density(dims=dims, radius=radius,
                                       **kwargs)  # returns a vedo Volume
        Actor.__init__(self, volume, name=name, br_class="density")
Example #6
0
    def __init__(self,
                 data,
                 name=None,
                 dims=(40, 40, 40),
                 radius=None,
                 **kwargs):
        """
        Creates a Volume actor showing the 3d density of a set
        of points.

        :param data: np.ndarray, Nx3 array with cell coordinates


        from vedo:
            Generate a density field from a point cloud. Input can also be a set of 3D coordinates.
            Output is a ``Volume``.
            The local neighborhood is specified as the `radius` around each sample position (each voxel).
            The density is expressed as the number of counts in the radius search.

            :param int,list dims: numer of voxels in x, y and z of the output Volume.

        """
        logger.debug("Creating a PointsDensity actor")

        # flip coordinates on XY axis to match brainrender coordinates system
        # data[:, 2] = -data[:, 2]

        # create volume and then actor
        volume = (vPoints(data).density(dims=dims, radius=radius,
                                        **kwargs).c("Dark2").alpha([0, 0.9
                                                                    ]).mode(1)
                  )  # returns a vedo Volume
        volume.mirror("z")
        Actor.__init__(self, volume, name=name, br_class="density")
Example #7
0
    def __init__(
        self,
        griddata,
        voxel_size=1,
        cmap="bwr",
        min_quantile=None,
        min_value=None,
        name=None,
        br_class=None,
        as_surface=True,
        **volume_kwargs,
    ):
        """
            Takes a 3d numpy array with volumetric data
            and returns an Actor with mesh: vedo.Volume.isosurface or a vedo.Volume.
            BY default the volume is represented as a surface

            To extract the surface:
                The isosurface needs a lower bound threshold, this can be
                either a user defined hard value (min_value) or the value
                corresponding to some percentile of the grid data.

            :param griddata: np.ndarray, 3d array with grid data
            :param voxel_size: int, size of each voxel in microns
            :param min_quantile: float, percentile for threshold
            :param min_value: float, value for threshold
            :param cmap: str, name of colormap to use
            :param as_surface, bool. default True. If True
                a surface mesh is returned instead of the whole volume
            :param volume_kwargs: keyword arguments for vedo's Volume class
        """
        # Create mesh
        color = volume_kwargs.pop("c", "viridis")
        if isinstance(griddata, np.ndarray):
            # create volume from data
            mesh = VedoVolume(
                griddata,
                spacing=[voxel_size, voxel_size, voxel_size],
                c=color,
                **volume_kwargs,
            )
        else:
            mesh = griddata  # assume a vedo Volume was passed

        if as_surface:
            # Get threshold
            if min_quantile is None and min_value is None:
                th = 0
            elif min_value is not None:
                th = min_value
            else:
                th = np.percentile(griddata.ravel(), min_quantile)

            mesh = mesh.legosurface(vmin=th, cmap=cmap)

        Actor.__init__(self,
                       mesh,
                       name=name or "Volume",
                       br_class=br_class or "Volume")
Example #8
0
    def __init__(self, data, radius=10, color="salmon", alpha=1, name=None):
        """
            Turns streamlines data to a mesh.
            :param data: pd.DataFrame with streamlines points data
            :param radius: float. Radius of the Tube mesh used to render streamlines
            :param color: str, name of the color to be used
            :param alpha: float, transparancy
            :param name: str, name of the actor.
        """
        if not isinstance(data, pd.DataFrame):
            raise TypeError("Input data should be a dataframe")

        self.radius = radius
        mesh = self._make_mesh(data).c(color).alpha(alpha)

        name = name or "Streamlines"
        Actor.__init__(self, mesh, name=name, br_class="Streamliness")
Example #9
0
 def __init__(self,
              pos,
              radius=100,
              color="blackboard",
              alpha=1,
              res=25,
              name=None):
     """
         Creates an actor representing a single point
         :param pos: list or np.ndarray with coordinates
         :param radius: float
         :param color: str,
         :param alpha: float
         :param res: int, resolution of mesh
         :param name: str, actor name
     """
     mesh = Sphere(pos=pos, r=radius, c=color, alpha=alpha, res=res)
     name = name or "Point"
     Actor.__init__(self, mesh, name=name, br_class="Point")
Example #10
0
    def __init__(
        self,
        neuron,
        color=None,
        alpha=1,
        neurite_radius=8,
        soma_radius=15,
        name=None,
    ):
        """
        Creates an Actor representing a single neuron's morphology
        :param neuron: path to .swc file, Mesh, Actor or Neuron from morphapi.morphology
        :param alpha: float
        :param color: str,
        :param neuron_radius: float, radius of axon/dendrites
        :param soma_radius: float, radius of soma
        :param name: str, actor name
        """
        logger.debug(f"Creating a Neuron actor")
        if color is None:
            color = "blackboard"
        alpha = alpha
        self.neurite_radius = neurite_radius
        self.soma_radius = soma_radius
        self.name = None

        if isinstance(neuron, (str, Path)):
            mesh = self._from_file(neuron)
        elif isinstance(neuron, (Mesh)):
            mesh = neuron
        elif isinstance(neuron, Actor):
            mesh = neuron.mesh
        elif isinstance(neuron, MorphoNeuron):
            mesh = self._from_morphapi_neuron(neuron)
        else:
            raise ValueError(
                f'Argument "neuron" is not in a recognized format: {_class_name(neuron)}'
            )

        Actor.__init__(self, mesh, name=self.name, br_class="Neuron")
        self.mesh.c(color).alpha(alpha)