Example #1
0
 def test_precomputed(self, model, expected_score):
     benchmark = DicarloRajalingham2018I2n()
     probabilities = pd.read_pickle(
         os.path.join(os.path.dirname(__file__), '..', 'test_metrics',
                      f'{model}-probabilities.pkl'))['data']
     probabilities = BehavioralAssembly(probabilities)
     candidate = PrecomputedProbabilities(probabilities)
     score = benchmark(candidate)
     assert score.raw.sel(aggregation='center') == approx(expected_score,
                                                          abs=.005)
     assert score.sel(aggregation='center') == approx(expected_score /
                                                      np.sqrt(.479),
                                                      abs=.005)
 def test_precomputed(self, model, expected_score):
     benchmark = DicarloRajalingham2018I2n()
     probabilities = Path(
         __file__
     ).parent.parent / 'test_metrics' / f'{model}-probabilities.nc'
     probabilities = BehavioralAssembly(xr.load_dataarray(probabilities))
     candidate = PrecomputedProbabilities(probabilities)
     score = benchmark(candidate)
     assert score.raw.sel(aggregation='center') == approx(expected_score,
                                                          abs=.005)
     assert score.sel(aggregation='center') == approx(expected_score /
                                                      np.sqrt(.479),
                                                      abs=.005)
Example #3
0
 def test_ceiling(self):
     benchmark = DicarloRajalingham2018I2n()
     ceiling = benchmark.ceiling
     assert ceiling.sel(aggregation='center') == approx(.479, abs=.0064)