Example #1
0
 def createSpecimen(self):
     stake = messup_stake(V2dList.from_dalmatian_string(choice(self.pool["stakes"]), sep=","))
     spaghetti = randint(1, 2) is 1
     fxWeight = FractionList.from_string(self.pool["fx-weights"]).choice()
     deltas = V2dList.from_dalmatian_list(self.fractionList.signed_sample_list(len(stake), 2))
     tweaks = self.fractionList.signed_sample_list(len(stake), 5)
     points = stake + (deltas*fxWeight)
     product = ProductionGame(chainlength = len(points) -1)
     product.set_constants("ZMLCQST").set_vars("IJK")
     product.init_with_random_rules(levels = 2, keyrules = self.pool["rules"])
     product.produce()
     product_obj = product.to_obj()
     brush = toBrush(product.core_chain(), points, fxWeight, tweaks, spaghetti)
     frequency_info = ", ".join(["{}:{}".format(k,v) for k, v in brush.action_frequency().items()])
     ruleInfo = ", ".join([r["s"] + "->" + r["r"] for r in product_obj["rules"]])
     summary = "Brush based on a stake of {} points, a weight of {} and the following rules {} starting with {} resulting in frequency {}".format(len(stake), fxWeight, ruleInfo , product_obj["start"], frequency_info)
     return {    
             "id": self.incId(),  
             "fx-weight": str(fxWeight),
             "stake": stake.to_dalmatian_list(),
             "spaghetti": spaghetti,
             "deltas": deltas.to_dalmatian_list(),
             "tweaks": tweaks,
             "points": points.to_dalmatian_list(),
             "product": product_obj,
             "brush": brush.to_dalmatian_string(),
             "brush-svg": brush.to_svg_string(BRUSH_WIDTH),
             "brush-cartesian": brush.to_core_cartesian_string(BRUSH_WIDTH),
             "summary": summary,
             "tags": ""
     }
Example #2
0
 def test_create(self):
     product = ProductionGame(chainlength = 60)
     product.set_constants("LQC").set_vars("IJK")
     product.init_with_random_rules(levels = 2, keyrules = ["L", "QQ", "C"])
     product.produce()
     result = product.to_obj()
     self.assertEqual(len(result["rules"]), 3)
     self.assertGreaterEqual(len(result["chain"]), len(result["core-chain"]))
     self.assertGreaterEqual(len(result["core-chain"]), 60)
Example #3
0
    def test_breeding(self):
        obj1 = {
            "constants": "ABC",
            "variables": "IJ",
            "start": "AIAI",
            "rules": [
                {
                    "s": "I",
                    "r": "BCJJ"
                },
                {
                    "s": "J",
                    "r": "ABII"
                }
            ]

        }
        obj2 = {
            "constants": "AD",
            "variables": "JK",
            "start": "DJJD",
            "rules": [
                {
                    "s": "J",
                    "r": "AJJA"
                },
                {
                    "s": "K",
                    "r": "DKDK"
                }
            ]
        }

        product = ProductionGame.from_crossover(obj1, obj2, 30)
        product.produce()
        expected_rules = [
                {
                    "s": "I",
                    "r": "BCJJ"
                },
                {
                    "s": "J",
                    "r": "ABIA"
                },
                {
                    "s": "K",
                    "r": "DKDK"
                }
            ]
        self.assertEqual(product.to_obj()["constants"], "ABCD")
        self.assertEqual(product.to_obj()["variables"], "IJK")
        self.assertEqual(product.to_obj()["start"], "DIAD")
        self.assertEqual(product.to_obj()["rules"], expected_rules)
Example #4
0
 def test_convert(self):
     product = ProductionGame(chainlength = 60)
     product.set_constants("LQC").set_vars("IJK")
     product.init_with_random_rules(levels = 2, keyrules = ["L", "QQ", "C"])
     product.produce()
     self.assertEqual(ProductionGame.from_obj(product.to_obj()), product)
    def mutation_specimen(self, specimen):
        # Create L-System
        product = ProductionGame.from_obj(specimen["product"])
        product.produce()
        product_obj = product.to_obj()

        # Convert chain to brushstokes
        tortugaconfig = TortugaConfig().set_magnitude_page_ratio(
            self.init.magnitude_page_ratio)
        tortugaconfig.set_scale_magnitude_ratio_string(
            self.init.scale_magnitude_ratio)
        tortugaconfig.set_brushstoke_angle_offset(
            self.init.brushstoke_angle_offset)
        tortugaconfig.set_xy(self.init.xy)
        angles = mutate_fraction(specimen["angles"], self.pool.angles)
        magnitudes = mutate_fraction(specimen["magnitudes"],
                                     self.pool.magnitudes)
        tortugaconfig.set_angles_string(angles)
        tortugaconfig.set_magnitudes_string(magnitudes)
        tortugaconfig.set_brush_ids(self.init.brushids)
        tortugaconfig.set_chain(product.chain)
        brushstokes = TortugaProducer(tortugaconfig).produce()
        bstats = V2dList([bs.xy for bs in brushstokes])
        # Create stencil aka DalmatianMedia
        stencil = DalmatianMedia(DlmtHeaders().set_brush_page_ratio(
            self.init.brush_page_ratio))
        stencil.add_view_string(
            "view i:1 lang en xy 0 0 width 1 height 1 flags o tags all but [ ] -> everything"
        )
        stencil.add_tag_description_string(
            "tag i:1 lang en same-as [] -> default")
        for brush in self.init.brushes:
            stencil.add_brush_string(brush)
        stencil.set_brushstrokes(brushstokes)
        allbr = stencil.page_brushstroke_list_for_view_string(
            "view i:1 lang en xy 0 0 width 1 height 1 flags o tags all but [ ] -> everything"
        )
        fitbr = stencil.page_brushstroke_list_for_view_string(
            "view i:1 lang en xy 0 0 width 1 height 1 flags O tags all but [ ] -> everything"
        )
        fitness = Fraction(len(fitbr), len(allbr))
        ruleInfo = ", ".join(
            [r["s"] + "->" + r["r"] for r in product_obj["rules"]])
        correlation = bstats.get_correlation()
        medianpoint = bstats.get_median_range(8)
        if correlation > 0.9 or correlation < -0.9:
            print("C", end="")
            return None
        if float(fitness) < 0.8:
            print("F", end="")
            return None
        if medianpoint.x < self.init.min_median_range.x:
            print("X", end="")
            return None
        if medianpoint.y < self.init.min_median_range.y:
            print("Y", end="")
            return None
        summary = "Stencil manually selected from carefully crafted generations using a Lindenmayer system approach based on angles [ {} ], magnitudes [ {} ] and the rules {} starting with {} resulting in {} brushstokes with a visibility of {:.2%}, correlation of {} and a median range of {}".format(
            angles, magnitudes, ruleInfo, product_obj["start"],
            len(brushstokes), float(fitness), correlation,
            medianpoint.to_float_string())
        return {
            "id": self.inc_id(),
            "product": product_obj,
            "angles": angles,
            "magnitudes": magnitudes,
            "stencil": stencil.to_obj(),
            "summary": summary,
            "tags": ""
        }