def __init__(self, n, equations, threshold, reset=brian.NoReset(), refractory=0 * ms, implicit=False, compile=True, **parameters): if "tau_refrac" in parameters: max_refractory = parameters["tau_refrac"].max() * ms else: max_refractory = None brian.NeuronGroup.__init__(self, n, model=equations, threshold=threshold, reset=reset, refractory=refractory, max_refractory=max_refractory, compile=compile, clock=simulator.state.network.clock, max_delay=simulator.state.max_delay * ms, implicit=implicit, freeze=False) for name, value in parameters.items(): setattr(self, name, value) self._S0 = self._S[:, 0] # store parameter values in case of reset. # TODO: update this when parameters are modified self.initial_values = {}
def __init__(self, n, equations, spiketimes=None): threshold = brian.directcontrol.MultipleSpikeGeneratorThreshold( [st.value for st in spiketimes]) reset = brian.NoReset() refractory = 0*ms BaseNeuronGroup.__init__(self, n, brian.LazyStateUpdater(), threshold, reset, refractory, spiketimes=spiketimes)
def __init__(self, n, equations, **parameters): threshold = brian.PoissonThreshold() reset = brian.NoReset() refractory = 0*ms BaseNeuronGroup.__init__(self, n, brian.LazyStateUpdater(), threshold, reset, refractory, **parameters) self.initialize()