def get_reward(mean_sample_vote, sound_extended, i_target, speaker, loudness_factor, softmax=False): if softmax: reward = exp(mean_sample_vote[i_target]) other_exp = 0.0 for i in xrange(len(mean_sample_vote)): if i!=i_target: other_exp += exp(mean_sample_vote[i]) reward /= reward + other_exp else: reward = mean_sample_vote[i_target] for i in xrange(len(mean_sample_vote)): if i!=i_target: reward -= mean_sample_vote[i] if speaker == 'adult': target_loudness = [72.77, 65.20, 66.04, 68.37, 68.47] else: target_loudness = [73.78, 68.68, 69.78] level = float(sound_extended.level) if isinf(level): level = 0.0 loudness_reward = level - target_loudness[i_target] if loudness_reward > 0.0: loudness_reward = 0.0 reward += loudness_factor * loudness_reward return reward
def get_confidences(self,mean_sample_vote): n_classes = len(mean_sample_vote) confidences = np.zeros(n_classes) norm_sum = 0.0 for i in xrange(n_classes): confidence_i = exp(mean_sample_vote[i]) confidences[i] = confidence_i norm_sum += confidence_i confidences /= norm_sum return confidences
def get_confidences(mean_sample_vote): n_classes = len(mean_sample_vote) confidences = np.zeros(n_classes) norm_sum = 0.0 for i in xrange(n_classes): confidence_i = exp(mean_sample_vote[i]) confidences[i] = confidence_i norm_sum += confidence_i confidences /= norm_sum return confidences
def get_reward(mean_sample_vote, sound_extended, i_target, speaker, loudness_factor, softmax=False): if softmax: reward = exp(mean_sample_vote[i_target]) other_exp = 0.0 for i in xrange(len(mean_sample_vote)): if i != i_target: other_exp += exp(mean_sample_vote[i]) reward /= reward + other_exp else: reward = mean_sample_vote[i_target] for i in xrange(len(mean_sample_vote)): if i != i_target: reward -= mean_sample_vote[i] if speaker == 'adult': target_loudness = [72.77, 65.20, 66.04, 68.37, 68.47] else: target_loudness = [73.78, 68.68, 69.78] level = float(sound_extended.level) if isinf(level): level = 0.0 loudness_reward = level - target_loudness[i_target] if loudness_reward > 0.0: loudness_reward = 0.0 reward += loudness_factor * loudness_reward return reward