Example #1
0
    def test___eq__not_implemented(self):
        an_hyperparam = HyperParameter(ParamTypes.INT, [1, 5])
        not_an_hyperparam = 3

        self.assertEqual(an_hyperparam.__eq__(not_an_hyperparam),
                         NotImplemented)
        self.assertNotEqual(an_hyperparam, not_an_hyperparam)
Example #2
0
 def test_int_exp(self):
     hyp = HyperParameter(ParamTypes.INT_EXP, [10, 10000])
     self.assertEqual(hyp.range, [1, 4])
     transformed = hyp.fit_transform(np.array([100]), np.array([0.5]))
     np.testing.assert_array_equal(transformed, np.array([2]))
     inverse_transform = hyp.inverse_transform([3])
     np.testing.assert_array_equal(inverse_transform, np.array([1000]))
Example #3
0
    def test_fit_gt_r_min(self, gpr_mock):
        """If the length of X is greater than r_minimum, gpr is fit."""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = GP(tunables, r_minimum=2)

        gp_mock = Mock()
        gpr_mock.return_value = gp_mock

        # Run
        X = np.array([[1., 1], [1.2, 2], [1.4, 4]])
        y = np.array([0.5, 0.6, 0.7])
        tuner.fit(X, y)

        # assert
        np.testing.assert_array_equal(tuner.X, X)
        np.testing.assert_array_equal(tuner.y, y)
        gpr_mock.assert_called_once_with(normalize_y=True)

        # compare arrays for equality, ignoring differences from reshaping
        (X_actual, y_actual), _ = gp_mock.fit.call_args
        np.testing.assert_array_equal(X_actual.ravel(), X.ravel())
        np.testing.assert_array_equal(y_actual.ravel(), y.ravel())
Example #4
0
 def test_int_exp(self):
     hyp = HyperParameter(ParamTypes.INT_EXP, [10, 10000])
     self.assertEqual(hyp.range, [1, 4])
     transformed = hyp.fit_transform(np.array([100]), np.array([0.5]))
     np.testing.assert_array_equal(transformed, np.array([2]))
     inverse_transform = hyp.inverse_transform([3])
     np.testing.assert_array_equal(inverse_transform, np.array([1000]))
Example #5
0
    def test_predict_x_gt_r_min(self, uniform_mock):
        """If the length of self.X is greater than r_minimum, self.gp is used."""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = GP(tunables, r_minimum=2)

        tuner.X = np.array([[1., 1], [1.2, 2], [1.4, 4]])

        tuner.gp = Mock()
        tuner.gp.predict.return_value = (np.array([0.8,
                                                   0.9]), np.array([0.1, 0.3]))

        # Run
        X = np.array([
            [1.6, 4],
            [1.8, 5],
        ])
        predicted = tuner.predict(X)

        # assert
        expected = np.array([[0.8, 0.1], [0.9, 0.3]])
        np.testing.assert_array_equal(predicted, expected)
        tuner.gp.predict.assert_called_once_with(X, return_std=True)
Example #6
0
    def test_fit_predict_uniform(self, predict_mock, random_mock,
                                 uniform_mock):
        """If random is lower than POU, Uniform is used."""

        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = GPEiVelocity(tunables, r_minimum=2)

        tuner.POU = 0.05

        random_mock.random.return_value = 0.01

        uniform_instance_mock = Mock()
        uniform_mock.return_value = uniform_instance_mock

        # Run
        X = np.array([[1., 1], [1.2, 2], [1.4, 3], [1.6, 4], [1.8, 5]])
        tuner.predict(X)

        # assert
        uniform_mock.assert_called_once_with(tunables)
        uniform_instance_mock.predict.assert_called_once_with(X)

        predict_mock.assert_not_called()
Example #7
0
    def test__create_candidates_no_grid(self, np_random_mock):
        """self.grid is False"""
        # Set-up
        np_random_mock.rand.return_value = np.array([.0, .2, .4, .6, .8])
        np_random_mock.randint.return_value = np.array([1, 2, 3, 4, 5])

        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
            ('a_string_param',
             HyperParameter(ParamTypes.STRING, ['a', 'b', 'c'])),
        )
        tuner = BaseTuner(tunables)

        # Run
        candidates = tuner._create_candidates(5)

        # Assert
        expected_candidates = np.array([[1.0, 1, 0.], [1.2, 2, 0.2],
                                        [1.4, 3, 0.4], [1.6, 4, 0.6],
                                        [1.8, 5, 0.8]])

        np.testing.assert_array_equal(candidates, expected_candidates)

        expected_calls = [
            call(5),
            call(5),
        ]
        np_random_mock.rand.assert_has_calls(expected_calls)
        np_random_mock.randint.assert_called_once_with(1, 6, size=5)
Example #8
0
    def test___init__(self):
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )

        # Run
        tuner = BaseTuner(tunables, gridding=5)

        # assert
        assert tuner.tunables == tunables
        assert tuner.grid is True
        assert tuner._best_score == -np.inf
        assert tuner._best_hyperparams is None
        assert tuner.grid_width == 5
        assert tuner.X_raw is None
        assert tuner.y_raw == []
        assert tuner.X.tolist() == []
        assert tuner.y.tolist() == []

        expected_grid_axes = [
            np.array([1., 1.25, 1.5, 1.75, 2.]),
            np.array([1., 2., 3., 4., 5.])
        ]
        np.testing.assert_array_equal(tuner._grid_axes, expected_grid_axes)
Example #9
0
    def test__create_candidates_gt_n_remaining(self, np_random_mock):
        """more than n points remaining"""
        # Set-up
        mock_context = dict()

        def shuffle(array):
            np_shuffle(array)

            # Store a copy of the array for the assert
            mock_context['shuffled_array'] = array.copy()

        np_random_mock.shuffle.side_effect = shuffle

        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = BaseTuner(tunables, gridding=3)

        # Insert 5 used vectors into X (4 remaining)
        tuner.X = np.array([
            [1., 1.],
            [1., 3.],
            [1., 5.],
            [1.5, 1.],
            [1.5, 5.],
        ])

        # Run
        candidates = tuner._create_candidates(2)

        # Assert
        expected_candidates = mock_context['shuffled_array'][0:2]
        np.testing.assert_array_equal(candidates, expected_candidates)
Example #10
0
    def test_predict_x_lt_r_min(self, uniform_mock):
        """If the length of self.X is smaller than r_minimum, Uniform is used."""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = GP(tunables, r_minimum=5)

        tuner.X = np.array([[1., 1], [1.2, 2], [1.4, 4]])

        tuner.gp = Mock()

        predict_mock = Mock()
        predict_mock.return_value = np.array([0.8, 0.9])
        uniform_instance_mock = Mock()
        uniform_instance_mock.predict = predict_mock
        uniform_mock.return_value = uniform_instance_mock

        # Run
        X = np.array([
            [1.6, 4],
            [1.8, 5],
        ])
        predicted = tuner.predict(X)

        # assert
        expected = np.array([0.8, 0.9])
        np.testing.assert_array_equal(predicted, expected)
        uniform_mock.assert_called_once_with(tunables)
        predict_mock.assert_called_once_with(X)
        tuner.gp.predict.assert_not_called()
Example #11
0
    def test___init___with_unicode_param_type(self):
        param_type_str = 'int'
        param_type_unicode = u'int'
        param_range = [0, 10]

        self.assertEqual(HyperParameter(param_type_unicode, param_range),
                         HyperParameter(param_type_str, param_range))
Example #12
0
    def test_predict(self, np_random_mock):

        # Set-up
        np_random_mock.rand.return_value = np.array([.4, .6, .8])

        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = Uniform(tunables)

        # Run
        x = np.array([
            [1., 1],
            [1.2, 2],
            [1.4, 3],
        ])
        predicted = tuner.predict(x)

        # Assert
        expected = np.array([.4, .6, .8])

        np.testing.assert_array_equal(predicted, expected)

        np_random_mock.rand.assert_called_once_with(3, 1)
Example #13
0
 def test_int_cat(self):
     hyp = HyperParameter(ParamTypes.INT_CAT, [10, 10000])
     transformed = hyp.fit_transform(np.array([10, 10000]), np.array([1,
                                                                      2]))
     np.testing.assert_array_equal(transformed, np.array([1, 2]))
     inverse_transform = hyp.inverse_transform([3, 0, 1, 2])
     np.testing.assert_array_equal(inverse_transform,
                                   np.array([10000, 10, 10, 10000]))
Example #14
0
 def test_int_cat(self):
     hyp = HyperParameter(ParamTypes.INT_CAT, [None, 10, 10000])
     transformed = hyp.fit_transform(np.array([None, 10, 10000]),
                                     np.array([0.1, 0.5, 0.9]))
     np.testing.assert_array_equal(transformed, np.array([0.1, 0.5, 0.9]))
     inverse_transform = hyp.inverse_transform([1.0, 0.0, 0.4, 0.8])
     np.testing.assert_array_equal(inverse_transform,
                                   np.array([10000, None, 10, 10000]))
Example #15
0
 def test_string(self):
     hyp = HyperParameter(ParamTypes.STRING, ['a', 'b', 'c'])
     transformed = hyp.fit_transform(np.array(['a', 'b', 'c']),
                                     np.array([2, 1, 3]))
     self.assertEqual(hyp.range, [1.0, 3.0])
     np.testing.assert_array_equal(transformed, np.array([2.0, 1.0, 3.0]))
     inverse_transform = hyp.inverse_transform([3])
     np.testing.assert_array_equal(inverse_transform, np.array(['c']))
Example #16
0
 def test_bool(self):
     hyp = HyperParameter(ParamTypes.BOOL, [True, False])
     transformed = hyp.fit_transform(np.array([True, False]),
                                     np.array([0.5, 0.7]))
     np.testing.assert_array_equal(transformed, np.array([0.5, 0.7]))
     self.assertEqual(hyp.range, [0.5, 0.7])
     inverse_transform = hyp.inverse_transform([0.7, 0.6, 0.5])
     np.testing.assert_array_equal(inverse_transform,
                                   np.array([False, False, True]))
Example #17
0
 def test_float(self):
     hyp = HyperParameter(ParamTypes.FLOAT, [1.5, 3.2])
     self.assertEqual(hyp.range, [1.5, 3.2])
     transformed = hyp.fit_transform(
         np.array([2, 2.4, 3.1]),
         np.array([0.5, 0.6, 0.1]),
     )
     np.testing.assert_array_equal(transformed, np.array([2, 2.4, 3.1]))
     inverse_transform = hyp.inverse_transform([1.7])
     np.testing.assert_array_equal(inverse_transform, np.array([1.7]))
Example #18
0
 def test_float(self):
     hyp = HyperParameter(ParamTypes.FLOAT, [1.5, 3.2])
     self.assertEqual(hyp.range, [1.5, 3.2])
     transformed = hyp.fit_transform(
         np.array([2, 2.4, 3.1]),
         np.array([0.5, 0.6, 0.1]),
     )
     np.testing.assert_array_equal(transformed, np.array([2, 2.4, 3.1]))
     inverse_transform = hyp.inverse_transform([1.7])
     np.testing.assert_array_equal(inverse_transform, np.array([1.7]))
Example #19
0
 def test_float_exp(self):
     hyp = HyperParameter(ParamTypes.FLOAT_EXP, [0.001, 100])
     self.assertEqual(hyp.range, [-3.0, 2.0])
     transformed = hyp.fit_transform(np.array([0.01, 1, 10]),
                                     np.array([-2.0, 0.0, 1.0]))
     np.testing.assert_array_equal(transformed, np.array([-2.0, 0.0, 1.0]))
     inverse_transform = hyp.inverse_transform([-1.0])
     np.testing.assert_array_equal(inverse_transform, np.array([0.1]))
     inverse_transform = hyp.inverse_transform([1.0])
     np.testing.assert_array_equal(inverse_transform, np.array([10.0]))
Example #20
0
 def test_float_cat(self):
     hyp = HyperParameter(ParamTypes.FLOAT_CAT, [0.1, 0.6, 0.5])
     transformed = hyp.fit_transform(np.array([0.1, 0.6, 0.1, 0.6]),
                                     np.array([1, 2, 3, 4]))
     np.testing.assert_array_equal(transformed,
                                   np.array([2.0, 3.0, 2.0, 3.0]))
     self.assertEqual(hyp.range, [0.0, 3.0])
     inverse_transform = hyp.inverse_transform([3, 0, 1, 5, 2.5])
     np.testing.assert_array_equal(inverse_transform,
                                   np.array([0.6, 0.5, 0.1, 0.6, 0.6]))
Example #21
0
 def test_float_cat(self):
     hyp = HyperParameter(ParamTypes.FLOAT_CAT, [None, 0.1, 0.6, 0.5])
     transformed = hyp.fit_transform(np.array([None, 0.1, 0.6, 0.1, 0.6]),
                                     np.array([1.0, 0.1, 0.2, 0.3, 0.4]))
     np.testing.assert_allclose(transformed,
                                np.array([1.0, 0.2, 0.3, 0.2, 0.3]))
     self.assertEqual(hyp.range, [0.0, 1.0])
     inverse_transform = hyp.inverse_transform(
         [0.3, 0.0, 0.1, 0.5, 0.27, 0.9])
     np.testing.assert_array_equal(
         inverse_transform, np.array([0.6, 0.5, 0.1, 0.6, 0.6, None]))
Example #22
0
 def test_int(self):
     hyp = HyperParameter(ParamTypes.INT, [1, 3])
     self.assertEqual(hyp.range, [1, 3])
     transformed = hyp.fit_transform(
         np.array([1, 2, 3]),
         np.array([0.5, 0.6, 0.1])
     )
     np.testing.assert_array_equal(transformed, np.array([1, 2, 3]))
     inverse_transform = hyp.inverse_transform(np.array([0.5]))
     np.testing.assert_array_equal(inverse_transform, np.array([0]))
     hyp = HyperParameter(ParamTypes.INT, [1.0, 3.0])
     self.assertEqual(hyp.range, [1, 3])
Example #23
0
 def test_int_cat(self):
     hyp = HyperParameter(ParamTypes.INT_CAT, [10, 10000])
     transformed = hyp.fit_transform(
         np.array([10, 10000]),
         np.array([1, 2])
     )
     np.testing.assert_array_equal(transformed, np.array([1, 2]))
     inverse_transform = hyp.inverse_transform([3, 0, 1, 2])
     np.testing.assert_array_equal(
         inverse_transform,
         np.array([10000, 10, 10, 10000])
     )
Example #24
0
 def test_bool(self):
     hyp = HyperParameter(ParamTypes.BOOL, [True, False])
     transformed = hyp.fit_transform(
         np.array([True, False]),
         np.array([0.5, 0.7])
     )
     np.testing.assert_array_equal(transformed, np.array([0.5, 0.7]))
     self.assertEqual(hyp.range, [0.5, 0.7])
     inverse_transform = hyp.inverse_transform([0.7, 0.6, 0.5])
     np.testing.assert_array_equal(
         inverse_transform,
         np.array([False, False, True])
     )
Example #25
0
 def test_string(self):
     hyp = HyperParameter(ParamTypes.STRING, ['a', 'b', 'c'])
     transformed = hyp.fit_transform(
         np.array(['a', 'b', 'c']),
         np.array([2, 1, 3])
     )
     self.assertEqual(hyp.range, [1.0, 3.0])
     np.testing.assert_array_equal(
         transformed,
         np.array([2.0, 1.0, 3.0])
     )
     inverse_transform = hyp.inverse_transform([3])
     np.testing.assert_array_equal(inverse_transform, np.array(['c']))
Example #26
0
    def test_cast_not_implemented(self, subclasses_mock):

        # create a fake HyperParameter subclass
        class FakeHyperParameter(HyperParameter):
            param_type = ParamTypes.INT

        # Make FakeHyperParameter the only subclass for this test
        subclasses_mock.return_value = [FakeHyperParameter]

        fake = HyperParameter(ParamTypes.INT, [None])

        with pytest.raises(NotImplementedError):
            fake.cast(1)
Example #27
0
    def test_cast_not_implemented(self, subclasses_mock):

        # create a fake HyperParameter subclass
        class FakeHyperParameter(HyperParameter):
            param_type = ParamTypes.INT

        # Make FakeHyperParameter the only subclass for this test
        subclasses_mock.return_value = [FakeHyperParameter]

        fake = HyperParameter(ParamTypes.INT, [None])

        with pytest.raises(NotImplementedError):
            fake.cast(1)
Example #28
0
    def test___init___with_string_param_type_valid(self):
        r = random.Random()
        r.seed(1)

        def random_case(s):
            return ''.join(r.choice([str.upper, str.lower])(c) for c in s)

        # allowed string param types
        for type_, range_ in self.parameter_constructions:
            for recase in [str.upper, str.lower, random_case]:
                str_type = recase(type_.name)
                self.assertEqual(HyperParameter(str_type, range_),
                                 HyperParameter(type_, range_))
Example #29
0
    def test_string(self):
        hyp = HyperParameter(ParamTypes.STRING, [None, 'a', 'b', 'c'])
        transformed = hyp.fit_transform(np.array([None, 'a', 'b', 'c']),
                                        np.array([0.1, 0.3, 0.6, 0.9]))
        self.assertEqual(hyp.range, [0.1, 0.9])
        np.testing.assert_array_equal(transformed,
                                      np.array([0.1, 0.3, 0.6, 0.9]))
        inverse_transform = hyp.inverse_transform(
            np.array([0.0, 0.4, 0.5, 0.8]))
        np.testing.assert_array_equal(inverse_transform,
                                      np.array([None, 'a', 'b', 'c']))

        inverse_transform = hyp.inverse_transform([3])
        np.testing.assert_array_equal(inverse_transform, np.array(['c']))
Example #30
0
 def test_float_exp(self):
     hyp = HyperParameter(ParamTypes.FLOAT_EXP, [0.001, 100])
     self.assertEqual(hyp.range, [-3.0, 2.0])
     transformed = hyp.fit_transform(
         np.array([0.01, 1, 10]),
         np.array([-2.0, 0.0, 1.0])
     )
     np.testing.assert_array_equal(
         transformed,
         np.array([-2.0, 0.0, 1.0])
     )
     inverse_transform = hyp.inverse_transform([-1.0])
     np.testing.assert_array_equal(inverse_transform, np.array([0.1]))
     inverse_transform = hyp.inverse_transform([1.0])
     np.testing.assert_array_equal(inverse_transform, np.array([10.0]))
Example #31
0
 def test_float_cat(self):
     hyp = HyperParameter(ParamTypes.FLOAT_CAT, [0.1, 0.6, 0.5])
     transformed = hyp.fit_transform(
         np.array([0.1, 0.6, 0.1, 0.6]),
         np.array([1, 2, 3, 4])
     )
     np.testing.assert_array_equal(
         transformed,
         np.array([2.0, 3.0, 2.0, 3.0])
     )
     self.assertEqual(hyp.range, [0.0, 3.0])
     inverse_transform = hyp.inverse_transform([3, 0, 1, 5, 2.5])
     np.testing.assert_array_equal(
         inverse_transform,
         np.array([0.6, 0.5, 0.1, 0.6, 0.6])
     )
Example #32
0
 def test_can_pickle(self):
     for protocol in range(0, pickle.HIGHEST_PROTOCOL + 1):
         for param_type, param_range in self.parameter_constructions:
             param = HyperParameter(param_type, param_range)
             pickled = pickle.dumps(param, protocol)
             unpickled = pickle.loads(pickled)
             self.assertEqual(param, unpickled)
Example #33
0
 def test_add_single_tunable(self):
     # See HDI-Project/BTB#84
     tunables = [
         ('a_float_param', HyperParameter(ParamTypes.FLOAT_EXP, [1., 2.])),
     ]
     tuner = GP(tunables)
     tuner.add({'a_float_param': 1.}, 1)
     tuner.add({'a_float_param': 1.}, 1)
Example #34
0
    def test__create_candidates_every_point_used(self):
        """every point has been used"""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = BaseTuner(tunables, gridding=5)

        # Insert 25 part_vecs into X
        tuner.X = np.array(list(product(*tuner._grid_axes)))

        # Run
        candidates = tuner._create_candidates(5)

        # Assert
        assert candidates is None
Example #35
0
    def test_propse_done(self, predict_mock, create_candidates_mock):
        """gridding is done"""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = BaseTuner(tunables)

        create_candidates_mock.return_value = None

        # Run
        params = tuner.propose(1)

        # Assert
        expected_params = None
        assert params == expected_params
Example #36
0
    def test_fit_lt_r_min(self, gpr_mock):
        """If the length of X is smaller than r_minimum, nothing is done."""
        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = GP(tunables, r_minimum=5)

        # Run
        X = np.array([[1., 1], [1.2, 2], [1.4, 4]])
        y = np.array([0.5, 0.6, 0.7])
        tuner.fit(X, y)

        # assert
        np.testing.assert_array_equal(tuner.X, X)
        np.testing.assert_array_equal(tuner.y, y)
        gpr_mock.assert_not_called()
Example #37
0
    def test_propse(self, create_candidates_mock):

        # Set-up
        tunables = (
            ('a_float_param', HyperParameter(ParamTypes.FLOAT, [1., 2.])),
            ('an_int_param', HyperParameter(ParamTypes.INT, [1, 5])),
        )
        tuner = CustomTuner(tunables)

        create_candidates_mock.return_value = np.array([[1.0, 1]])

        # Run
        params = tuner.propose()

        # Assert
        expected_params = np.array([1.0, 1])
        np.testing.assert_array_equal(params, expected_params)

        create_candidates_mock.assert_called_once_with(1)
Example #38
0
    def test_copy(self):
        for typ, rang in self.parameter_constructions:
            hyp = HyperParameter(typ, rang)
            hyp_copy = copy.copy(hyp)
            self.assertIsNot(hyp, hyp_copy)
            self.assertIs(type(hyp), type(hyp_copy))
            self.assertEqual(hyp.range, hyp_copy.range)

            # shallow copy should just have copied references
            self.assertIs(hyp.range, hyp_copy.range)
Example #39
0
    def test_deepcopy(self):
        for typ, rang in self.parameter_constructions:
            hyp = HyperParameter(typ, rang)
            hyp_copy = copy.deepcopy(hyp)
            self.assertIsNot(hyp, hyp_copy)
            self.assertIs(type(hyp), type(hyp_copy))
            self.assertEqual(hyp.range, hyp_copy.range)

            # deep copy should have new attributes
            self.assertIsNot(hyp.range, hyp_copy.range)