Example #1
0
 def test__get_candidates_none(self):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     X = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
     recommender.dpp_vector = X
     candidates = recommender._get_candidates()
     expected = None
     self.assertEqual(expected, candidates)
Example #2
0
 def test__acquire_multiple(self):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     predictions = np.array([1, 9, 9, 7])
     acquired = recommender._acquire(predictions)
     expected_1 = 2
     expected_2 = 1
     self.assertTrue(acquired == expected_1 or acquired == expected_2)
Example #3
0
 def test_predict_multiple_rankings(self):
     # Run
     recommender = Recommender(self.dpp_matrix, self.n_components)
     # matching row is [1, 0, 0, 0, 0, 0, 0, 3, 0, 4, 6, 2, 5, 0, 8, 0]
     recommender.matching_dataset = self.dpp_matrix[0]
     indicies = [0, 1, 14, 13]
     predictions = recommender.predict(indicies)
     expected = [2, 1, 3, 1]
     np.testing.assert_array_equal(predictions, expected)
Example #4
0
 def test__get_candidates_some(self):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     X = np.array([0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0])
     recommender.dpp_vector = X
     expected = np.array([0, 1, 2, 4, 6, 8, 10, 11, 12, 14, 15])
     candidates = recommender._get_candidates()
     np.testing.assert_array_equal(
         candidates,
         expected,
     )
Example #5
0
 def test_add_none(self, fit_mock):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     recommender.add({})
     expected_x = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
     np.testing.assert_array_equal(recommender.dpp_vector, expected_x)
     np.testing.assert_array_equal(
         fit_mock.call_args[0][0],
         expected_x.reshape(1, -1)
     )
     fit_mock.assert_called_once()
Example #6
0
 def test___init__(self, nmf_mock):
     nmf_mock().fit_transform.return_value = self.dpp_ranked
     # Run
     recommender = Recommender(self.dpp_matrix, self.n_components)
     np.testing.assert_array_equal(recommender.dpp_matrix, self.dpp_matrix)
     np.testing.assert_array_equal(recommender.dpp_ranked, self.dpp_ranked)
     assert recommender.n_components == self.n_components
     assert recommender.matching_dataset is None
     # assert dpp_vector has same number of entries as pipelines
     assert recommender.dpp_vector.shape[0] == self.dpp_matrix.shape[1]
Example #7
0
 def test_propose_without_add(self, randint_mock):
     index = 0
     randint_mock.return_value = index
     proposed = np.argmax(self.dpp_matrix[0])  # 14
     recommender = Recommender(self.dpp_matrix, self.n_components)
     np.testing.assert_array_equal(
         recommender.matching_dataset,
         self.dpp_matrix[index, :],
     )
     pipeline_index = recommender.propose()
     randint_mock.assert_called_once_with(4)  # 4 is self.dpp_matrix length
     assert pipeline_index == proposed
Example #8
0
    def test_propose_done(self, predict_mock, get_candidates_mock):
        # Set-up
        recommender = Recommender(self.dpp_matrix, self.n_components)

        get_candidates_mock.return_value = None

        # Run
        params = recommender.propose()

        # Assert
        expected_params = None
        assert params == expected_params
Example #9
0
 def test__get_candidates_all(self):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     X = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
     recommender.X = X
     candidates = recommender._get_candidates()
     expected = np.array(
         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
     )
     np.testing.assert_array_equal(
         candidates,
         expected,
     )
Example #10
0
 def test_fit(self, nmf_mock):
     nmf_mock().fit_transform.return_value = self.dpp_ranked
     n_components = 3
     X = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
     # Run
     recommender = Recommender(self.dpp_matrix, n_components)
     for i in range(self.dpp_ranked.shape[0]):
         nmf_mock().transform.return_value = self.dpp_ranked[i, :]
         recommender.fit(X)
         np.testing.assert_array_equal(
             recommender.matching_dataset,
             self.dpp_matrix[i],
         )
Example #11
0
 def test_propose_empty_add(self, randint_mock):
     index = 0
     randint_mock.return_value = index
     proposed = np.argmax(self.dpp_matrix[0])  # 14
     recommender = Recommender(self.dpp_matrix, self.n_components)
     recommender.add({})
     np.testing.assert_array_equal(
         recommender.matching_dataset,
         self.dpp_matrix[index, :],
     )
     pipeline_index = recommender.propose()
     assert randint_mock.call_count == 2
     assert pipeline_index == proposed
Example #12
0
    def test_propose_once(self, predict_mock, get_candidates_mock):
        """n == 1"""
        # Set-up
        recommender = Recommender(self.dpp_matrix, self.n_components)

        get_candidates_mock.return_value = [1, 3, 7, 8]

        predict_mock.return_value = np.array([1, 4, 2, 3])

        # Run
        pipeline_index = recommender.propose()

        # Assert
        expected_pipeline_index = 3
        assert pipeline_index == expected_pipeline_index
Example #13
0
    def test___init__(self, nmf_mock, randint_mock):
        # set-up
        index = 1
        nmf_mock().fit_transform.return_value = self.dpp_ranked
        randint_mock.return_value = index

        # run
        recommender = Recommender(self.dpp_matrix, self.n_components)

        # asserts
        randint_mock.assert_called_once_with(4)  # 4 is self.dpp_matrix length
        np.testing.assert_array_equal(
            recommender.matching_dataset,
            self.dpp_matrix[index, :],
        )
        np.testing.assert_array_equal(recommender.dpp_matrix, self.dpp_matrix)
        np.testing.assert_array_equal(recommender.dpp_ranked, self.dpp_ranked)
Example #14
0
 def test_add_twice(self, fit_mock):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     recommender.add({1: 2, 3: 4, 5: 1})
     expected_x_1 = np.array(
         [0, 2, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
     )
     np.testing.assert_array_equal(recommender.dpp_vector, expected_x_1)
     np.testing.assert_array_equal(
         fit_mock.call_args[0][0],
         expected_x_1.reshape(1, -1)
     )
     recommender.add({1: 1, 6: 3, 9: 4})
     expected_x_2 = np.array(
         [0, 1, 0, 4, 0, 1, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0]
     )
     np.testing.assert_array_equal(recommender.dpp_vector, expected_x_2)
     np.testing.assert_array_equal(
         fit_mock.call_args[0][0],
         expected_x_2.reshape(1, -1)
     )
     self.assertEqual(fit_mock.call_count, 2)
Example #15
0
 def test__acquire_last(self):
     recommender = Recommender(self.dpp_matrix, self.n_components)
     predictions = np.array([1, 3, 5, 7])
     acquired = recommender._acquire(predictions)
     expected = 3
     self.assertEqual(acquired, expected)