def main(): data = json.load(open('../models/l035_scores.json')) stamps = np.array(data['stamps']) scores = np.array(data['scores']) unmerged = stamps[scores > .2] merged = merge(unmerged, scores[scores > 0.2]) unambig = [1, 3, 4, 6, 7, 11, 12, 13, 15, 16, 17, 18, 19] ambig = [2, 9] new = [14] fp = [0, 5] neb = [8, 10] groups = [unambig, ambig, new, fp, neb] ims = [ex(merged[i]) for g in groups for i in g] plt.figure(dpi=400, tight_layout=True) collage(ims, 5, 4) trace_groups(groups, 'rgbcm', 5, 4) hide_axes() plt.savefig('l35.eps')
def chunked_merge(stamps, scores): stamps[stamps[:, 1] > 180, 1] -= 360 lon = stamps[:, 1] ostamps, oscores = [], [] for lcen in np.arange(lon.min(), lon.max() + 1, 1): good = np.abs(lon - lcen) < 1 if good.sum() == 0: continue st, sc = merge(stamps[good], scores[good]) good = np.abs(st[:, 1] - lcen) < .5 if good.sum() == 0: continue ostamps.append(st[good]) oscores.append(sc[good]) print lcen, good.sum() result = merge(np.vstack(ostamps), np.hstack(oscores)) result[0][result[0][:, 1] < 0, 1] += 360 return result
def main(): np.random.seed(42) data = json.load(open('../models/l035_scores.json')) stamps = np.array(data['stamps']) scores = np.array(data['scores']) l = stamps[:, 1] b = stamps[:, 2] good = (scores > .1) & (l < 34.8) & (l > 34.6) & (b > -.4) & (b < -0.2) assert good.sum() > 0 stamps = stamps[good] scores = scores[good] merged, ms = merge(stamps, scores) f = get_field(35) g = scale(f.i4, limits=[70, 99]) r = scale(f.mips, limits=[70, 99]) b = r * 0 im = np.dstack((r, g, b)) plt.figure(dpi=200, tight_layout=True) plt.imshow(im, extent=[36, 34, -1, 1], interpolation="bicubic") plot_stamps(stamps, linewidth=1, edgecolor='white', label='Raw', alpha=1) plot_stamps(merged, edgecolor='red', alpha=1, linewidth=2, label='Merged') plt.xlim(34.795, 34.695) plt.ylim(-.365, -.265) plt.xlabel("$\ell$ ($^\circ$)") plt.ylabel("b ($^\circ$)") leg = plt.legend(loc='upper left', frameon=False) for text in leg.get_texts(): text.set_color('white') plt.savefig('cluster.eps')
def main(): data = json.load(open('../models/l035_scores.json')) stamps = np.array(data['stamps']) scores = np.array(data['scores']) l = stamps[:, 1] b = stamps[:, 2] good = (scores > .1) & (l < 35.17) & (l > 34.9) & (b > -.9) & (b < -0.6) stamps = stamps[good] scores = scores[good] merged = merge(stamps, scores) mwp = np.array(bubble_params()) mwp = mwp[(mwp[:, 1] < 35.3) & (mwp[:, 1] > 35)] f = get_field(35) bad = f.mips == 0 g = scale(f.i4, limits=[30, 99.8]) r = scale(f.mips, limits=[30, 99.7]) r[bad] = 255 b = r * 0 im = np.dstack((r, g, b)) plt.figure(dpi=200, tight_layout=True) plt.imshow(im, extent=[36, 34, -1, 1], interpolation="bicubic") plot_stamps(merged, edgecolor='#7570b3', linewidth=2, label='Brut') plot_stamps(mwp, edgecolor='#e7298a', linewidth=2, label='MWP') plt.xlim(35.2, 35) plt.ylim(-.825, -.625) plt.legend(loc='upper right') plt.xlabel("$\ell$ ($^\circ$)") plt.ylabel("b ($^\circ$)") plt.savefig('cluster_confusion.eps')