def test4_optimize(self): set_log_level(2) opt = ALSOption().get_default_option() opt.d = 5 opt.num_workers = 2 opt.model_path = 'als.bin' opt.validation = aux.Option({'topk': 10}) optimize_option = aux.Option({ 'loss': 'val_rmse', 'max_trials': 10, 'deployment': True, 'start_with_default_parameters': True, 'space': { 'd': ['randint', ['d', 10, 20]], 'reg_u': ['uniform', ['reg_u', 0.1, 0.3]], 'reg_i': ['uniform', ['reg_i', 0.1, 0.3]], 'alpha': ['randint', ['alpha', 8, 10]] } }) opt.optimize = optimize_option opt.evaluation_period = 1 opt.tensorboard = aux.Option({'root': './tb', 'name': 'als'}) data_opt = MatrixMarketOptions().get_default_option() data_opt.input.main = self.ml_100k + 'main' data_opt.input.uid = self.ml_100k + 'uid' data_opt.input.iid = self.ml_100k + 'iid' data_opt.data.value_prepro = aux.Option({'name': 'OneBased'}) als = ALS(opt, data_opt=data_opt) als.init_factors() als.train() default_result = als.get_validation_results() als.optimize() base_loss = default_result['rmse'] # val_rmse optimize_loss = als.get_optimization_data()['best']['val_rmse'] self.assertTrue(base_loss > optimize_loss) als.load('als.bin') loss = als.get_validation_results() self.assertAlmostEqual(loss['rmse'], optimize_loss) os.remove('als.bin')