Example #1
0
class AgentSep1D(Agent):
    def __init__(self, name, pars, nrenvs=1, job=None, experiment=None):
        Agent.__init__(self, name, pars, nrenvs, job, experiment)

    def build(self):
        self.policy_net1 = DQN(71, self.pars).to(self.device)
        self.target_net1 = DQN(71, self.pars).to(self.device)
        self.target_net1.load_state_dict(self.policy_net1.state_dict())
        self.target_net1.eval()

        self.policy_net2 = DQN(71, self.pars).to(self.device)
        self.target_net2 = DQN(71, self.pars).to(self.device)
        self.target_net2.load_state_dict(self.policy_net2.state_dict())
        self.target_net2.eval()

        self.optimizer1 = optim.SGD(self.policy_net1.parameters(),
                                    lr=self.pars['lr'],
                                    momentum=self.pars['momentum'])  #
        self.optimizer2 = optim.SGD(self.policy_net2.parameters(),
                                    lr=self.pars['lr'],
                                    momentum=self.pars['momentum'])  #
        self.optimizer1 = optim.Adam(self.policy_net1.parameters())
        self.optimizer2 = optim.Adam(self.policy_net2.parameters())
        self.memory2 = ReplayMemory(10000)
        self.memory1 = ReplayMemory(10000)

    def getaction(self, state1, state2, test=False):
        mes = torch.tensor([[0, 0, 0, 0]], device=self.device)
        comm2 = self.policy_net1(
            state2, 0,
            mes)[self.idC].detach() if np.random.rand() < self.prob else mes
        comm1 = self.policy_net2(
            state1, 0,
            mes)[self.idC].detach() if np.random.rand() < self.prob else mes
        if test:
            action1 = self.policy_net1(state1, 1,
                                       comm2)[0].max(1)[1].view(1, 1)
            action2 = self.policy_net2(state2, 1,
                                       comm1)[0].max(1)[1].view(1, 1)
        else:
            action1 = self.select_action(state1, comm2, self.policy_net1)
            action2 = self.select_action(state2, comm1, self.policy_net2)
        return action1, action2, [comm1, comm2]

    def getStates(self, env):
        screen1 = env.render_env_1d()  #.transpose((2, 0, 1))
        return torch.from_numpy(screen1).unsqueeze(0).to(
            self.device), torch.from_numpy(screen1).unsqueeze(0).to(
                self.device)

    def saveStates(self, state1, state2, action1, action2, next_state1,
                   next_state2, reward1, reward2, env_id):
        self.capmem += 2
        if self.pars['ppe'] != '1':
            self.memory2.push(state2, action2, next_state2, reward2, state1)
            self.memory1.push(state1, action1, next_state1, reward1, state2)
        else:
            self.memory1.store([state1, action1, next_state1, reward1, state2])
            self.memory2.store([state2, action2, next_state2, reward2, state1])
            #self.memory2.push(state2, action2, next_state2, reward2, state1)
            #self.memory1.push(state1, action1, next_state1, reward1, state2)
    def optimize(self):
        self.optimize_model(self.policy_net1, self.target_net1, self.memory1,
                            self.optimizer1)
        self.optimize_model(self.policy_net2, self.target_net2, self.memory2,
                            self.optimizer2)

    def updateTarget(self, i_episode, step=False):
        #soft_update(self.target_net, self.policy_net, tau=0.01)
        if step:
            return
        if i_episode % self.TARGET_UPDATE == 0:
            self.target_net1.load_state_dict(self.policy_net1.state_dict())
            self.target_net2.load_state_dict(self.policy_net2.state_dict())

    def save(self):
        torch.save(self.policy_net1.state_dict(),
                   self.pars['results_path'] + self.name + '/model1')
        torch.save(self.policy_net2.state_dict(),
                   self.pars['results_path'] + self.name + '/model2')

    def perturb_learning_rate(self, i_episode, nolast=True):
        if nolast:
            new_lr_factor = 10**np.random.normal(scale=1.0)
            new_momentum_delta = np.random.normal(scale=0.1)
            self.EPS_DECAY += np.random.normal(scale=50.0)
            if self.EPS_DECAY < 50:
                self.EPS_DECAY = 50
            if self.prob >= 0:
                self.prob += np.random.normal(scale=0.05) - 0.025
                self.prob = min(max(0, self.prob), 1)
        for param_group in self.optimizer1.param_groups:
            if nolast:
                param_group['lr'] *= new_lr_factor
                param_group['momentum'] += new_momentum_delta
            self.momentum1 = param_group['momentum']
            self.lr1 = param_group['lr']
        if nolast:
            new_lr_factor = 10**np.random.normal(scale=1.0)
            new_momentum_delta = np.random.normal(scale=0.1)
        for param_group in self.optimizer2.param_groups:
            if nolast:
                param_group['lr'] *= new_lr_factor
                param_group['momentum'] += new_momentum_delta
            self.momentum2 = param_group['momentum']
            self.lr2 = param_group['lr']
        with open(
                os.path.join(self.pars['results_path'] + self.name,
                             'hyper-{}.json').format(i_episode),
                'w') as outfile:
            json.dump(
                {
                    'lr1': self.lr1,
                    'momentum1': self.momentum1,
                    'lr2': self.lr2,
                    'momentum2': self.momentum2,
                    'eps_decay': self.EPS_DECAY,
                    'prob': self.prob,
                    'i_episode': i_episode
                }, outfile)

    def clone(self, agent):
        state_dict = agent.policy_net1.state_dict()
        self.policy_net1.load_state_dict(state_dict)
        state_dict = agent.optimizer1.state_dict()
        self.optimizer1.load_state_dict(state_dict)
        state_dict = agent.policy_net2.state_dict()
        self.policy_net2.load_state_dict(state_dict)
        state_dict = agent.optimizer2.state_dict()
        self.optimizer2.load_state_dict(state_dict)
        self.target_net1.load_state_dict(self.policy_net1.state_dict())
        self.target_net2.load_state_dict(self.policy_net2.state_dict())
        self.EPS_DECAY = agent.EPS_DECAY
Example #2
0
class AgentACShare1D(Agent):
    def __init__(self, name, pars, nrenvs=1, job=None, experiment=None):
        Agent.__init__(self,name, pars, nrenvs, job, experiment)
    def build(self):
        self.policy_net = DQN(71, self.pars).to(self.device)
        self.q_net = DQN(71, self.pars).to(self.device)
        self.target_net = DQN(71, self.pars).to(self.device)
        self.target_net.load_state_dict(self.q_net.state_dict())
        self.target_net.eval()
        
        if self.pars['momentum']>0:
            self.optimizer = optim.SGD(
                    self.q_net.parameters(), lr=self.pars['lr'], 
                    momentum=self.pars['momentum'])#
            self.policy_optimizer = optim.SGD(
                    self.policy_net.parameters(), lr=self.pars['lr'], 
                    momentum=self.pars['momentum'])#
        else:
            self.optimizer = optim.Adam(self.q_net.parameters())
            self.policy_optimizer = optim.Adam(self.policy_net.parameters())
        self.memory = ReplayMemory(10000)
        
        self.eps_threshold = 0.01
        self.bufs = [[] for _ in range(len(self.envs)*2)]
        
    def updateTarget(self, i_episode, step=False):
        #soft_update(self.target_net, self.policy_net, tau=0.01)
        if step:
            return
        self.optimize_policy(self.policy_net, self.bufs, self.policy_optimizer)
        
        if i_episode % self.TARGET_UPDATE == 0:
            self.target_net.load_state_dict(self.q_net.state_dict())
            self.eps_threshold -= 0.001
    def saveStates(self, state1, state2, action1,action2, next_state1,next_state2, reward1,reward2, env_id):
                    logp1, ent1, logp2, ent2 = self.rem
                    if self.pars['ppe']!='1':
                        self.memory.push(state2, action2, next_state2, reward2, state1)
                        self.memory.push(state1, action1, next_state1, reward1, state2)
                    else:
                        self.memory.store([state1, action1, next_state1, reward1, state2])
                        self.memory.store([state2, action2, next_state2, reward2, state1])
                    #self.buf2.append([state2, action2,1, reward2, logp2, ent2])
                    #self.buf1.append([state1, action1,1, reward1, logp1, ent1])
                    
                    self.bufs[2*env_id  ].append([state2, action2,1, reward2, logp2, ent2])
                    self.bufs[2*env_id+1].append([state1, action1,1, reward1, logp1, ent1])
    def select_action(self, state, comm, policy_net):
        probs1, _ = policy_net(state, 1, comm)#.cpu().data.numpy()
        m = Categorical(logits=probs1)
        action = m.sample()
        return action.view(1, 1), m.log_prob(action), m.entropy()
    
    def getComm(self, mes, policy_net, state1_batch):
        return self.policy_net(state1_batch, 1, mes)[self.idC].detach() if np.random.rand()<self.prob else mes
    
    def getaction(self, state1, state2, test=False):
        mes = torch.tensor([[0,0,0,0]], device=self.device)
        #maybe error
        comm2 = self.policy_net(state2, 0, mes)[self.idC] if (test and  0<self.prob) or np.random.rand()<self.prob else mes
        comm1 = self.policy_net(state1, 0, mes)[self.idC] if (test and  0<self.prob) or np.random.rand()<self.prob else mes
        
        action1, logp1, ent1 = self.select_action(state1,  comm2, self.policy_net)
        action2, logp2, ent2 = self.select_action(state2,  comm1, self.policy_net)
        self.rem =[logp1, ent1, logp2, ent2]
        return action1, action2, [comm1, comm2]
    def optimize_policy(self, policy_net, memories, optimizer):
        policy_loss = 0
        value_loss = 0
        ent = 0
        for memory in memories:#[memory1, memory2]:
            R = torch.zeros(1, 1, device=self.device)
            #GAE = torch.zeros(1, 1, device=self.device)
            saved_r = torch.cat([c[3].float() for c in memory])
            states = torch.cat([c[0].float() for c in memory])
            action_batch = torch.cat([c[1].float() for c in memory]).view(-1,1)
            mes = torch.tensor([[0,0,0,0] for i in memory], device=self.device)
            actionV = self.q_net(states, 0, mes)[0].gather(1, action_batch.long())
            mu = saved_r.mean()
            std = saved_r.std()
            eps = 0.000001       
            #print(memory)
            for i in reversed(range(len(memory)-1)):
                    _,_,_,r,log_prob, entr = memory[i]
                    ac = (actionV[i] - mu) / (std + eps)#actionV[i]#also use mu and std
                    #Discounted Sum of Future Rewards + reward for the given state
                    R = self.GAMMA * R + (r.float() - mu) / (std + eps)
                    advantage = R - ac
                    policy_loss += -log_prob *advantage .detach()
                    #ent += entr#*0
                    
        optimizer.zero_grad()
        (policy_loss.mean()  + self.eps_threshold*ent).backward()
        for param in policy_net.parameters():
            if param.grad is not None:
                param.grad.data.clamp_(-1, 1)
        optimizer.step()
    def save(self):
        torch.save(self.policy_net.state_dict(), self.pars['results_path']+self.name+'/model')
        torch.save(self.q_net.state_dict(), self.pars['results_path']+self.name+'/modelQ')
    def load(self, PATH):
        #torch.cuda.is_available()
        self.policy_net.load_state_dict(torch.load(PATH, map_location= 'cuda' if torch.cuda.is_available() else 'cpu')) 
        self.q_net.load_state_dict(torch.load(PATH+'Q', map_location= 'cuda' if torch.cuda.is_available() else 'cpu')) 
        self.target_net.load_state_dict(self.q_net.state_dict())
        
    def optimize(self):
        self.optimize_model(self.q_net, self.target_net, self.memory, self.optimizer)
        
    def perturb_learning_rate(self, i_episode, nolast=True):
        if nolast:
            new_lr_factor = 10**np.random.normal(scale=1.0)
            new_momentum_delta = np.random.normal(scale=0.1)
            self.eps_threshold += np.random.normal(scale=0.1)
            self.alpha += np.random.normal(scale=0.1)
            if self.alpha>1:
                self.alpha = 1
            if self.alpha<0.5:
                self.alpha = 0.5
            if self.eps_threshold<0:
                self.eps_threshold = 0.00001
            self.EPS_DECAY += np.random.normal(scale=50.0)
            if self.EPS_DECAY<50:
                self.EPS_DECAY = 50
            if self.prob>=0:
                self.prob += np.random.normal(scale=0.05)-0.025
                self.prob = min(max(0,self.prob),1)
        for param_group in self.optimizer.param_groups:
            if nolast:
                param_group['lr'] *= new_lr_factor
                param_group['momentum'] += new_momentum_delta
            self.momentum =param_group['momentum']
            self.lr = param_group['lr']
        if nolast:
            new_lr_factor = 10**np.random.normal(scale=1.0)
            new_momentum_delta = np.random.normal(scale=0.1)
        for param_group in self.policy_optimizer.param_groups:
            if nolast:
                param_group['lr'] *= new_lr_factor
                param_group['momentum'] += new_momentum_delta
            self.momentum1 =param_group['momentum']
            self.lr1 = param_group['lr']
        with open(os.path.join(self.pars['results_path']+ self.name,'hyper-{}.json').format(i_episode), 'w') as outfile:
            json.dump({'lr':self.lr, 'momentum':self.momentum, 'alpha':self.alpha,
                       'lr1':self.lr1, 'momentum1':self.momentum1,'eps_decay':self.EPS_DECAY,
                       'eps_entropy':self.eps_threshold,
                       'prob':self.prob,'i_episode':i_episode}, outfile)
    def clone(self, agent):
        state_dict = agent.policy_net.state_dict()
        self.policy_net.load_state_dict(state_dict)
        state_dict = agent.policy_optimizer.state_dict()
        self.policy_optimizer.load_state_dict(state_dict)
        self.alpha = agent.alpha
        state_dict = agent.q_net.state_dict()
        self.q_net.load_state_dict(state_dict)
        state_dict = agent.optimizer.state_dict()
        self.optimizer.load_state_dict(state_dict)
        self.target_net.load_state_dict(self.q_net.state_dict())
        self.EPS_DECAY = agent.EPS_DECAY
        self.eps_threshold = agent.eps_threshold
        self.prob = agent.prob