class DQNAgent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): """Interacts with and learns from the environment.""" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def __init__(self, state_size, action_size, seed, sample_method='uniform', method='doubledqn', device=None, **kwargs): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) self.device = Agent.device if device is None else device # Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(self.device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(self.device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) self.dqnmethod = method self.sample_method = sample_method # Replay memory if sample_method == 'minority_resampled': self.memory = MinorityResampledReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed, device=self.device) elif sample_method == 'prioritized': if 'alpha' in kwargs: alpha = kwargs['alpha'] else: alpha = None if 'beta0' in kwargs: beta = kwargs['beta0'] else: beta = None self.memory = PrioritizedReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed, device=self.device, alpha=alpha, beta0=beta) elif sample_method == 'uniform': self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed, device=self.device) else: raise Exception('Unrecognized sampling method') # Initialize time step (for updating every UPDATE_EVERY steps) self.update_step = 0 self.replay_step = 0 self.episode_count = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add_new_experience(state, action, reward, next_state, done) self.update_step = (self.update_step + 1) % UPDATE_EVERY # This is checked in learn self.replay_step = (self.replay_step + 1) % REPLAY_EVERY self.episode_count = self.episode_count + 1 if done else self.episode_count if len(self.memory) > BATCH_SIZE: if self.sample_method == 'prioritized': if self.replay_step == 0: self.learn(GAMMA, method=self.dqnmethod) else: self.learn(GAMMA, method=self.dqnmethod) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(self.device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def dqn(self, rewards, next_states, dones, gamma): y = torch.zeros_like(rewards) # For end of episode, the return is just the final reward y[(dones == 1).squeeze(), ...] = rewards[(dones == 1).squeeze(), ...] # Compute the aproximation of the optimal target reward values (Q*) with torch.no_grad(): logits = self.qnetwork_target(next_states[(dones == 0).squeeze(), ...]) next_values, _ = torch.max(logits, 1) # Values of next max actions y[(dones == 0).squeeze(), ...] = rewards[(dones == 0).squeeze(), ...] + gamma * next_values.unsqueeze(-1) return y def doubledqn(self, rewards, next_states, dones, gamma): y = torch.zeros_like(rewards) # For end of episode, the return is just the final reward y[(dones == 1).squeeze(), ...] = rewards[(dones == 1).squeeze(), ...] # Compute the aproximation of the optimal target reward values (Q*) with torch.no_grad(): # 1 - Get the local net next action next_local_logits = self.qnetwork_local( next_states[(dones == 0).squeeze(), ...]) _, max_next_local_act = torch.max(next_local_logits, 1) # Values of next max actions # 2 - Get target network's value of the local's max next action next_target_logits = self.qnetwork_target( next_states[(dones == 0).squeeze(), ...]) values = next_target_logits.gather( 1, max_next_local_act.unsqueeze(-1)) # 3 - Obtain the approximation of y[(dones == 0).squeeze(), ...] = rewards[(dones == 0).squeeze(), ...] + gamma * values return y def learn(self, gamma, method='doubledqn'): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones, idc, weights = self.memory.sample( self.episode_count) dones = torch.round(dones).int() if method == 'dqn': y = self.dqn(rewards=rewards, next_states=next_states, dones=dones, gamma=gamma) elif method == 'doubledqn': y = self.doubledqn(rewards=rewards, next_states=next_states, dones=dones, gamma=gamma) else: raise Exception('Unrecognized method') ## TODO: compute and minimize the loss # GT: We train the local network, # and update the target network parameters # zero the parameter gradients self.qnetwork_local.train() # 1 - Clear out gradients from the local network: perform detach() and zero_() on network parameters self.optimizer.zero_grad() # 2 - Local estimation of action values local_q = self.qnetwork_local(states) # 3 - Loss between the approximation of optimal target reward values (Q*) and local estimates local_q = local_q.gather(1, actions) # Prior expected returns # Temporal Difference (TD) error td_error = y - local_q # Update the priorities self.memory.update_priorities( np.abs(td_error.data.clone().cpu().numpy()) + 1.0e-5, idc) if self.sample_method == 'prioritized': local_q.backward(-weights * td_error) else: loss = torch.nn.MSELoss(reduce=False)(local_q, y) # 4 - Gradient descend on local network loss.backward(weights) # 5 - Gradient update self.optimizer.step() # ------------------- update target network ------------------- # if self.update_step == 0: # 6 - Set local network to eval # self.qnetwork_local.eval() ... this messes things up !! self.soft_update(TAU) def soft_update(self, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(self.qnetwork_target.parameters(), self.qnetwork_local.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed) def step(self, state, action, reward, next_state, done): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward self.memory.add(state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def reset(self): self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)