Example #1
0
def clickThey():
    global d_key
    global pa
    rep_talk()
    return
    pa += 1
    act.configure(text='批刷' + str(pa) + '词')
    f = ''
    if platform.system() == 'Windows':
        f = open("d:/YYY/词林动物1.txt", 'r', encoding='UTF-8')
    else:
        f = open("/home/ubuntu/DaiMeng/data/xmlData/词林动物1.txt", 'r', encoding='UTF-8')

    words = f.readlines()
    for word in words:

        word = word.strip('\n').replace('\ufeff','')
        trans_json(request_(words))
        phsen_ana = get_phsen()
        Ds_scan()
        fast_scan()

        ph_und = trans_ltp.get_thisund()
        for key in ph_und.Semdic:
            t1.insert(INSERT, key + '扫描::' + str(ph_und.Semdic[key]) + '\n')
Example #2
0
def clickIt():
    global d_key
    global ra
    ra += 1
    act.configure(text = '随机' + str(ra) +'词')
    if e.get() == '':
        ra_wo = test_random()
    else:
        ra_wo = [e.get().split(' ')[0],get_explans(e.get().split(' ')[0])[0]]
    t1.delete('1.0', 'end')
    t1.mark_set(INSERT , '2.1')
    wo_ex = (ra_wo[0] + ':' + ra_wo[1].strip(' ')).replace('.','=').replace(',','!').replace("|",'').replace(',','!')
    trans_json (request_(wo_ex))
    t1.insert(INSERT, wo_ex + '\n')
    phsen_ana = get_phsen()
    Ds_scan()
    fast_scan()

    hownet_words_list = get_hownet_words(r'/home/ubuntu/DaiMeng/data/xmlData/整理.txt')


    b = [i for i in hownet_words_list if i.word == ra_wo[0]]
    for c in b:
        t_A.insert(INSERT,c.word + c.gc + c.DEF + '\n')
        print(c.word, c.gc, c.DEF)

    sn = 0  #字典返回解释后,0句0词的信息加载为d_key
    wr_in =''
    for sen in phsen_ana:
        print(sen.sen_mean)
        if sn == 0:
            set_d_key(wo = sen.w_anas[0].wo ,pos = sen.w_anas[0].pos,syn=sen.w_anas[0],cla = sen.w_anas[0].cla)  
        sen_result = sentence_match_result(sen.w_anas,js_cla='字典')
        if sen_result:
            t1.insert(INSERT, '内涵知识:' + str(sen_result[-1]) + '\n')
            if ra_wo[0].find(':') == -1:
                wr_in += ',' + str(sen_result[-1])
        sn += 1
    if wr_in != '':
        formatok = True
        cc = 0
        while cc < len(ra_wo[0]):    #检查节点名,不能有特殊字符
            if '._!|/'.find(ra_wo[0][cc]) > -1:
                formatok = False
                break
            cc += 1
        if formatok:
            d_key = get_d_key()
            Gn_audit(d_key, wr_in.strip(','))
    ph_und = trans_ltp.get_thisund()
    for key in ph_und.Semdic:
        t1.insert(INSERT, key + '扫描::' + str(ph_und.Semdic[key]) + '\n')
Example #3
0
def rep_talk(input='我们出门买橡皮呗'):
    trans_json (request_(input))
    phsen_ana = get_phsen()

    for sen in phsen_ana:
        sen_result = sentence_match_result(sen.w_anas)
        exp_result = experience_mean_result(sen)
        dsent_list = []
        lsent_list =[]
        if (sen_result):
            trans_ltp.thinking_str += '这句注意=' + sen.sen_in + '意味着=' + str(sen_result[-1])
            dsent_list.append(sen_result.pop(0))
            lsent_list.append(sen_result.pop(0))
            phsen_ana[i].l_form = lsent_list
            phsen_ana[i].d_form = dsent_list

        if exp_result:
            phsen_ana[i].exp_mean = exp_result
        break    # 这里干啥忘了,不敢删除那就跑一轮吧
    Ds_scan()
    fast_scan()
    test_dic = {}
    ss = 0
    ph_und = trans_ltp.get_thisund()
    Has_Qu = False # 疑问句指示
    print(trans_ltp.thinking_str)



    for sen in phsen_ana:
        disp_wo = ''
        if_Q = False
        Q_if = False
        disp_wo += sen.sen_in

        for w in sen.w_anas:
            if len(disp_wo) < 500:
                disp_wo += (w.wo + '::' + w.yuf + '::' + w.pos + '::' + w.wgr + ' :: ' + w.rel + '\n')
            if w.pos == '疑问词':
                if_Q = True
                phsen_ana[ss].sen_mean = phsen_ana[ss].sen_mean.replace('=' + w.wo, '=疑问=' + w.wo)  # 做上疑问标记,=号方便劈开
            elif w.wo == '?':
                Q_if = True
        test_dic['句子sn=' + str(ss)] = sen.sen_in + '\n' + sen.sen_mean + '\n'
        test_dic['词汇sn=' + str(ss)] = disp_wo

        if if_Q and Q_if:
            phsen_ana[ss].env_mean += ',句式=疑问'
            Has_Qu = True
        ss += 1



    if len(phsen_ana)>1:
        phase_ana()    # 这里是段落理解的演示,单句无效
        ph_und = trans_ltp.get_thisund()
        print('tttttttttt'+ thinking_str)
        if '回复' in test_dic:
            test_dic['回复'] += Thlog_ana(ph_und.rec[1])
        else: test_dic['回复'] = Thlog_ana(ph_und.rec[1])
    else:    # 这里是分类知识库的搜多,仅限单句


        Thlog_ana(myexp_ana())
        ph_und = trans_ltp.get_thisund()
        if '回复' in test_dic:
            test_dic['回复'] += Thlog_ana(myexp_ana())
        else: test_dic['回复'] = Thlog_ana(myexp_ana())


        if '回复' in test_dic:
            test_dic['回复'] += Thlog_ana(myexp_ana(no='我的日记'))
        else: test_dic['回复'] = Thlog_ana(myexp_ana(no='我的日记'))



    test_dic['扫描'] = str(ph_und.Semdic)
    if len(test_dic['回复']) < 3 :
        ph_und = trans_ltp.get_thisund()
        for key in ph_und.Semdic:
            if key == 'V' :
                for vv in ph_und.Semdic[key]:
                    if vv.find('sn='):
                        continue
                    thinking_str += '重要的'+ vv + '\n'
        test_dic['回复'] += Thlog_ana()
        print(ph_und.Semdic)

    print('***************')
    print(test_dic['回复'])


    test_dic['回复']=test_dic['回复'].replace('\n\n','\n').replace('\n','\nΨ').strip('Ψ')
    test_dic['回复']=test_dic['回复'].replace('\n\n','\n').replace('\n','\nΨ').strip('Ψ')
    return test_dic
Example #4
0
def clickMe():
    global ti
    global ssi
    ti += 1
    inp = e.get()
    ssi += len(re.split(r'[,。!?;]|\.\.\.',inp)) -1
    trans_json(request_(inp))
    t_nlu.member.append(inp)   # 做输入/对话的记录

    phsen_ana = get_phsen()
    act.configure(text = str(ti) + '段:' + str(len(phsen_ana)) + '句')

    t0.delete('1.0','end')
    t1.delete('1.0','end')
    t_A.delete('1.0','end')
    t0.mark_set(INSERT , '2.1')
    t1.mark_set(INSERT , '2.1')
    t_A.mark_set(INSERT , '2.1')
    
    i = 0
    Has_Qu = False
    sn = 0
    for sen in phsen_ana:
        if sn == 0:
            set_d_key(wo = sen.w_anas[0].wo ,pos = sen.w_anas[0].pos,syn=sen.w_anas[0],cla = sen.w_anas[0].cla)  
        sen_result = sentence_match_result(sen.w_anas)
        exp_result = experience_mean_result(sen)
        dsent_list = []
        lsent_list =[]
        if (sen_result):
            trans_ltp.thinking_str += '这句注意=' + sen.sen_in + '意味着=' + str(sen_result[-1])
            dsent_list.append(sen_result.pop(0))
            lsent_list.append(sen_result.pop(0))
            phsen_ana[i].l_form = lsent_list
            phsen_ana[i].d_form = dsent_list

        if exp_result:
            phsen_ana[i].exp_mean = exp_result
        t0.insert(INSERT,sen.sen_mean + '\n')
        t0.insert(INSERT,str(lsent_list) + '\n')
        t0.insert(INSERT,str(dsent_list) + '\n')
        t0.insert(INSERT,str(exp_result) + '\n')
        sn += 1
    Ds_scan()
    fast_scan()

    for sen in phsen_ana:
        disp_wo = ''
        if_Q =False
        Q_if =False
        disp_wo += sen.sen_in
        for w in sen.w_anas:
            if len(disp_wo) < 1200:
                disp_wo +=(w.wo + '::' + w.yuf + '::'+w.pos + '::' + w.wgr + ' :: ' +w.cla + '::' +  w.rel  + '\n')
            if w.pos=='疑问词':
                if_Q = True
                phsen_ana[i].sen_mean = phsen_ana[i].sen_mean.replace('='+ w.wo,'=疑问='+w.wo) #做上疑问标记,=号方便劈开
            elif w.wo == '?':
                Q_if = True
        t1.insert(INSERT,disp_wo)


        if if_Q and Q_if:
            phsen_ana[i].env_mean += ',句式=疑问'
            t0.insert(INSERT,'句式=疑问')
            Has_Qu = True
        i += 1
    ph_und = trans_ltp.get_thisund()


    if Has_Qu:
        Q_res = Query_ana(phsen_ana)
        t_A.insert(INSERT, str(Q_res) + '\n')

    for key in ph_und.Semdic:
        t1.insert(INSERT, key + '扫描::' + str(ph_und.Semdic[key]) +'\n')
    phase_ana()
    if len(phsen_ana) > 0:
        t_A.insert(INSERT, Thlog_ana())
        t_A.insert(INSERT, Thlog_ana(myexp_ana()))
        t_A.insert(INSERT, Thlog_ana(myexp_ana(no='我的日记')))

    if 'UND' not in t_nlu.features:
        t_nlu.features['UND'] = {}
    t_nlu.features['UND'][inp] = ph_und  # 等完成后,一起收了,注意这是个二维队列,与ph_und平行的还能添加更多的后续分析
    print('ssi' * 5 + '    ' + str(ssi))
    if ssi > 4:
        t_A.insert(INSERT, Thlog_ana(rep_ph_ana(t_nlu)))    # 对话段落每5句再做一次分析。
        ssi = 0
Example #5
0
def fast_scan(js_cla='fast',
              sxml=None):  # 面向phsen_ana,对所有句子对短小属性做快速、可重复的匹配。已支持@as,@C,@Y,双重变量
    global this_und
    root = sxml  # 添加表达2之外其他描述句式的选择,要送出句式集合节点的上一层
    if not root:
        root = ET.parse(r'/home/ubuntu/DaiMeng/data/xmlData/表达2.xml').getroot()
    this_und = trans_ltp.get_thisund()
    Yf_ele = ['主语', 'V', '状语']

    for ele in Yf_ele:
        this_und.Semdic[ele] = ''
    for js_no in root.iter(js_cla):  # 增加的第一层是分类标签,一般只有0号有效,所以跑一次就可以了
        ss = 0
        for sen in this_und.phsen_ana:
            Yf_str = sen.sen_mean.replace('::', ',').split(',')
            for ele in Yf_ele:
                sen_ele = ''
                for ys in Yf_str:
                    if ys.find(ele + '=') > -1:
                        sen_ele += ',' + ys
                if sen_ele != '':
                    this_und.Semdic[ele] += 'sn=' + str(
                        ss) + sen_ele + '\n'  # 每句scan后写一行
            matrec_dic = {}  #记录每个主题中该句子各词语匹配情况
            for node in js_no.iter('句式'):
                logic_express = node.find('逻辑句式').text
                sem_t = None
                if '主题' in node.attrib:
                    sem_t = node.attrib['主题']
                sen_sem = ''
                for ch_no in node.iter('描述句式'):
                    if '逻辑' in ch_no.attrib:
                        logic_express = ch_no.attrib[
                            '逻辑']  # 在特殊情况下,使用单句有效的逻辑句式,用于截胡后边

                    if sem_t != None:
                        if not sem_t in this_und.Semdic:
                            this_und.Semdic[sem_t] = ''
                    des_str = ch_no.text.split(',')
                    as_pars = []  # @as参数组的列表
                    as_par = ['wo', '']  # @as匹配参数的元组
                    if_as = False
                    if ch_no.text.find('@as') > -1:
                        dd = 0
                        for des in des_str:  # 记录装载本次des句式中包含的as变量位置和参数
                            if des[:3] == '@as':
                                if_as = True
                                as_pai = des.split('.')
                                if int(
                                        as_pai[1]
                                ) == -1:  # 如果是公用的dicexpl_key则单独装载。(-1表示)
                                    d_key = get_d_key()
                                    if as_pai[2] == 'wo':
                                        des_str[dd] = d_key.wo
                                    elif as_pai[2] == 'pos':
                                        des_str[dd] = '@P.' + d_key.pos
                                    elif as_pai[2] == 'syn':
                                        des_str[dd] = d_key.syn.split('+')[0]
                                    elif as_pai[2] == 'cla':
                                        cat_cla = d_key.cla.split(
                                            '+')[0].split('.')[-1]
                                        cat_cla = re.sub('\d+', '', cat_cla)
                                        cat_cla = re.sub('[=#@]+', '', cat_cla)
                                        des_str[dd] = '@G.in(' + cat_cla[
                                            cat_cla.find('_') +
                                            1:] + ')'  # 只取对应目标的第0个分类的最后一截。
                                    # @as变量的1号位置是跟随的des句式元素序号,从0开始;2号位置是跟随的内容(分类,词性或者词本身),dd是本身的位置。
                                else:
                                    as_par = [dd, int(as_pai[1]), as_pai[2]]
                                    as_pars.append(as_par)
                            dd += 1

                    j = 0
                    w = 0
                    dista = 0
                    par_C = ''
                    mat_dic = {}
                    B_C = -1  # @C变量开关
                    last_mat = -1  # 上一个匹配好的w_anas位置
                    while j < len(des_str):  # 以描述句式为基准进行匹配
                        if w > len(sen.w_anas) - 1:
                            break

                        mat_this = False
                        mat_des = False

                        s_mat = des_str[j].replace('opt', '')
                        if des_str[j].find('@C') > -1:  # 不管@C函数
                            B_C = w
                            if des_str[j].split('.')[1] == 'wo':
                                par_C = sen.w_anas[w].wo
                                if j == len(des_str) - 1:  # 最后一项 @C全收
                                    ww = w + 1
                                    while ww < len(sen.w_anas):
                                        par_C += '+' + sen.w_anas[ww].wo
                                        ww += 1
                                    B_C = -1
                                    last_mat = len(sen.w_anas) - 1
                            j += 1
                            w += 1
                            continue
                        elif des_str[j].find('@Y.') > -1:  # 依存句法的relate匹配
                            for ww in range(w, len(
                                    sen.w_anas)):  # 在写@Y变量时要考虑到前后秩序
                                if sen.w_anas[ww].pos == '标点':
                                    break
                                # 由wgr词组判断是否关联 一级直连的放行,因为前边只能是HED
                                if_rel = ('_' + sen.w_anas[ww].wgr + '_').find(
                                    '_' + sen.w_anas[last_mat].wo + '_') > -1
                                if j == 0:
                                    if_rel = True
                                elif 'HEDCOV'.find(sen.w_anas[ww].yuf) > -1:
                                    if_rel = True
                                # 这里要求前后的两项有语法依存关系,HED关联的那一层关系无效,不能跨越标点使用
                                # print(sen.w_anas[ww].yuf + '++++' + cat_str('@Y.', des_str[j], '+'))
                                if if_rel and sen.w_anas[ww].yuf == cat_str(
                                        '@Y.', des_str[j] + '+',
                                        '+'):  # 会漏一个字符
                                    if des_str[j].find('+') == -1:
                                        this_und.phsen_ana[ss].w_anas[
                                            w].ele = '+' + des_str[j]
                                    elif element_match(
                                            sen.w_anas[ww],
                                            des_str[j].split('+')[-1]):
                                        this_und.phsen_ana[ss].w_anas[
                                            w].ele = '+' + des_str[j]
                                    else:
                                        continue
                                    matrec_dic[w] = des_str[j]
                                    mat_dic[des_str[j]] = sen.w_anas[ww].wo
                                    mat_this = True
                                    last_mat = ww
                                    break

                            if mat_this:  # @Y变量从这里输出了
                                if j == len(des_str) - 1:
                                    t_sem = str(
                                        logic_sentence(mat_dic,
                                                       logic_express)).replace(
                                                           '\'', '')
                                    this_und.phsen_ana[ss].w_anas[
                                        last_mat].ele = t_sem  #以此记录匹配上的词语位置

                                    if sen_sem.find(
                                            t_sem.split('=')[-1].strip(
                                                ']')) == -1:
                                        sen_sem += ',' + t_sem
                                    if len(sen.w_anas) - w > len(
                                            des_str):  # 后边够长时可以重复匹配
                                        j = 0
                                        w = max(w, last_mat) + 1
                                        continue
                                    else:
                                        break
                                else:
                                    j += 1
                                    w = max(w, last_mat) + 1
                                    continue
                            else:
                                j = 0
                                w += 1
                                continue

                        if element_match(this_und.phsen_ana[ss].w_anas[w],
                                         s_mat):
                            last_mat = w
                            this_und.phsen_ana[ss].w_anas[
                                w].ele = '+' + des_str[j]
                            matrec_dic[w] = des_str[j]
                            mat_dic[des_str[j]] = sen.w_anas[w].wo
                            if if_as:
                                for a_par in as_pars:  # 每一项匹配成功后,查找后边有没有as项追随自己,发现后按各参数执行替换。
                                    if int(a_par[1]) == j:
                                        if a_par[2] == 'v':
                                            des_str[int(
                                                a_par[0])] = des_sent_list[j]
                                        elif a_par[2] == 'wo':
                                            des_str[int(
                                                a_par[0])] = sen.w_anas[w].wo
                                        elif a_par[2] == 'pos':
                                            des_str[int(
                                                a_par[0]
                                            )] = '@P.' + sen.w_anas[w].pos
                                        elif a_par[2] == 'cla':
                                            des_str[int(
                                                a_par[0]
                                            )] = '@G.in' + sen.w_anas[
                                                w].cla  # if_as复原.cla
                            if B_C > -1:
                                mat_dic[des_str[j - 1]] = par_C
                                B_C = -1
                            if j == len(des_str) - 1:
                                mat_des = True
                            else:
                                dista = 1
                                j += 1
                                w += 1
                                continue
                        elif B_C > -1:
                            par_C += '+' + sen.w_anas[w].wo

                            w += 1
                            continue
                        elif des_str[j].find('opt') > -1:
                            j += 1
                            continue
                        elif dista > 0 and '助词副词形容词数词'.find(
                                sen.w_anas[w].pos) > -1:
                            dista += -1
                            w += 1
                            continue
                        elif len(
                                sen.w_anas) - w > len(des_str):  # 后边够长时可以也重复匹配
                            if if_as:
                                des_str = ch_no.text.split(',')  # if_as复原
                            mat_dic[des_str[j]] = ''
                            j = 0
                            w += 1
                            continue
                        elif not mat_des:
                            break
                        if mat_des:
                            if if_as:
                                des_str = des_str = ch_no.text.split(
                                    ',')  # if_as复原
                            # 每句在字典栏目中加写一行
                            t_sem = str(logic_sentence(mat_dic,
                                                       logic_express)).replace(
                                                           '\'', '')
                            if this_und.phsen_ana[ss].w_anas[
                                    last_mat].ele == None:
                                this_und.phsen_ana[ss].w_anas[
                                    last_mat].ele = t_sem
                            else:
                                this_und.phsen_ana[ss].w_anas[
                                    last_mat].ele += '\n' + t_sem

                            if sen_sem.find(t_sem.split('=')[-1]) == -1:
                                sen_sem += ',' + t_sem
                            if len(sen.w_anas) - w > len(
                                    des_str):  # 后边够长时可以重复匹配
                                j = 0
                                w += 1
                                continue
                            else:
                                break
                if sen_sem != '':
                    this_und.Semdic[sem_t] += 'sn=' + str(ss) + sen_sem + '\n'
                    if sen_sem.find('发送信息=') > -1:
                        if sen.sen_in[-1] != '”':
                            sss = ss + 1
                            while sss < len(this_und.phsen_ana):
                                this_und.Semdic[sem_t] += 'sn=' + str(
                                    sss) + ',信息={' + this_und.phsen_ana[
                                        sss].sen_in.replace(' ', '+') + '\n'
                                sss += 1
                                if this_und.phsen_ana[sss].sen_in[-1] == '”':
                                    break
            ss += 1
        ele_sts(this_und.Semdic)

        break
    this_und.rec[0] = trans_ltp.input_a
    this_und.rec[1] = trans_ltp.thinking_str
    trans_ltp.set_thisund(ph=this_und)
    return this_und
Example #6
0
def rep_talk(input='我们出门买橡皮呗'):
    trans_ltp.thinking_str = ''
    global ssi


    ssi += len(re.split(r'[,。!?;]|\.\.\.',input)) -1
    trans_json(request_(input))
    t_nlu.member.append(input)   # 做输入/对话的记录


    if len(input)>4:
        if input[:4] == '@古诗#':
            print(input[4:])
            phase_json.phase_json_ana(input[4:], idiom = True)
    print(trans_ltp.thinking_str)	
    trans_json (request_(input))
    phsen_ana = get_phsen()

    for sen in phsen_ana:
        sen_result = sentence_match_result(sen.w_anas)
        exp_result = experience_mean_result(sen)
        dsent_list = []
        lsent_list =[]
        if (sen_result):
            trans_ltp.thinking_str += '这句注意=' + sen.sen_in + '意味着=' + str(sen_result[-1])
            dsent_list.append(sen_result.pop(0))
            lsent_list.append(sen_result.pop(0))
            phsen_ana[i].l_form = lsent_list
            phsen_ana[i].d_form = dsent_list

        if exp_result:
            phsen_ana[i].exp_mean = exp_result
        break    # 这里干啥忘了,不敢删除那就跑一轮吧
    Ds_scan()
    fast_scan()
    test_dic = {}
    ss = 0
    ph_und = trans_ltp.get_thisund()
    Has_Qu = False # 疑问句指示
    print(trans_ltp.thinking_str)



    for sen in phsen_ana:
        disp_wo = ''
        if_Q = False
        Q_if = False
        disp_wo += sen.sen_in

        for w in sen.w_anas:
            if len(disp_wo) < 500:
                disp_wo += (w.wo + '::' + w.yuf + '::' + w.pos + '::' + w.wgr + ' :: ' + w.rel + '\n')
            if w.pos == '疑问词':
                if_Q = True
                phsen_ana[ss].sen_mean = phsen_ana[ss].sen_mean.replace('=' + w.wo, '=疑问=' + w.wo)  # 做上疑问标记,=号方便劈开
            elif w.wo == '?':
                Q_if = True
        test_dic['句子sn=' + str(ss)] = sen.sen_in + '\n' + sen.sen_mean + '\n'
        test_dic['词汇sn=' + str(ss)] = disp_wo

        if if_Q and Q_if:
            phsen_ana[ss].env_mean += ',句式=疑问'
            Has_Qu = True
        ss += 1


    if len(phsen_ana)>1:
        print(321,phsen_ana)
        phase_ana()    # 这里是段落理解的演示,单句无效
        ph_und = trans_ltp.get_thisund()
        # print('tttttttttt'+ trans_ltp.thinking_str)
        if '回复' in test_dic:
            test_dic['回复'] += Thlog_ana(ph_und.rec[1])
        else: 
            test_dic['回复'] = Thlog_ana(ph_und.rec[1])
            #print('***************')
            #print(test_dic['回复'])

	
    else:    # 这里是分类知识库的搜多,仅限单句


        Thlog_ana(myexp_ana())
        ph_und = trans_ltp.get_thisund()
        if '回复' in test_dic:
            test_dic['回复'] += Thlog_ana(myexp_ana())
        else: test_dic['回复'] = Thlog_ana(myexp_ana())
        #print('********2*******')
        #print(test_dic['回复'])


        if '回复' in test_dic:
            trans_ltp.thinking_str = ''
            test_dic['回复'] += Thlog_ana(myexp_ana(no='我的日记'))
        else: test_dic['回复'] = Thlog_ana(myexp_ana(no='我的日记'))

    print('********3*******')
    print(test_dic['回复'])

    test_dic['扫描'] = str(ph_und.Semdic)
    if len(test_dic['回复']) < 3 :
        ph_und = trans_ltp.get_thisund()
        for key in ph_und.Semdic:
            if key == 'V' :
                for vv in ph_und.Semdic[key]:
                    if vv.find('sn='):
                        continue
                    thinking_str += '重要的'+ vv + '\n'
        test_dic['回复'] += Thlog_ana()
        print(ph_und.Semdic)

    if 'UND' not in t_nlu.features:
        t_nlu.features['UND'] = {}
    t_nlu.features['UND'][input] = ph_und  # 等完成后,一起收了,注意这是个二维队列,与ph_und平行的还能添加更多的后续分析
    print('ssi' * 5 + '    ' + str(ssi))
    if ssi > 4:
        test_dic['回复'] += Thlog_ana(rep_ph_ana(t_nlu))    # 对话段落每5句再做一次分析。
        ssi = 0

    test_dic['回复']=test_dic['回复'].replace('\n\n','\n').replace('\n','\nΨ').strip('Ψ')
    print('******4*****')
    print(test_dic['回复'])
    return test_dic