def raster_mask_values( raster: Union[gdal.Dataset, str, list], values_to_mask: list, out_path: Union[list, str, None] = None, include_original_nodata: bool = True, dst_nodata: Union[float, int, str, list, None] = "infer", in_place: bool = False, overwrite: bool = True, opened: bool = False, prefix: str = "", postfix: str = "_nodata_masked", creation_options: list = [], ) -> Union[list, gdal.Dataset, str]: """Mask a raster with a list of values. Args: raster (path | raster | list): The raster(s) to retrieve nodata values from. values_to_mask (list): The list of values to mask in the raster(s) **kwargs: include_original_nodata: (bool): If True, the nodata value of the raster(s) will be included in the values to mask. dst_nodata (float, int, str, None): The target nodata value. If 'infer' the nodata value is set based on the input datatype. A list of nodata values can be based matching the amount of input rasters. If multiple nodata values should be set, use raster_mask_values. out_path (path | list | None): The destination of the changed rasters. If out_paths are specified, in_place is automatically set to False. The path can be a folder. in_place (bool): Should the rasters be changed in_place or copied? prefix (str): Prefix to add the the output if a folder is specified in out_path. postfix (str): Postfix to add the the output if a folder is specified in out_path. Returns: Returns the rasters with nodata removed. If in_place is True a reference to the changed orignal is returned, otherwise a copied memory raster or the path to the generated raster is outputted. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check(values_to_mask, [list], "values_to_mask") type_check(out_path, [list, str], "out_path", allow_none=True) type_check(include_original_nodata, [bool], "include_original_nodata") type_check(dst_nodata, [float, int, str, list], "dst_nodata", allow_none=True) type_check(in_place, [bool], "in_place") type_check(overwrite, [bool], "overwrite") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") type_check(opened, [bool], "opened") type_check(creation_options, [list], "creation_options") rasters_metadata = [] internal_in_place = in_place if out_path is None else False internal_dst_nodata = None for value in values_to_mask: if not isinstance(value, (int, float)): raise ValueError("Values in values_to_mask must be ints or floats") if isinstance(dst_nodata, str) and dst_nodata != "infer": raise ValueError(f"Invalid dst_nodata value. {dst_nodata}") if isinstance(dst_nodata, list): if not isinstance(raster, list) or len(dst_nodata) != len(raster): raise ValueError( "If dst_nodata is a list, raster must also be a list of equal length." ) for value in dst_nodata: if isinstance(value, (float, int, str, None)): raise ValueError("Invalid type in dst_nodata list.") if isinstance(value, str) and value != "infer": raise ValueError( "If dst_nodata is a string it must be 'infer'") raster_list, out_names = ready_io_raster(raster, out_path, overwrite, prefix, postfix) output_rasters = [] for index, internal_raster in enumerate(raster_list): raster_metadata = None if len(rasters_metadata) == 0: raster_metadata = raster_to_metadata(internal_raster) rasters_metadata.append(raster_metadata) else: raster_metadata = rasters_metadata[index] if dst_nodata == "infer": internal_dst_nodata = gdal_nodata_value_from_type( raster_metadata["dtype_gdal_raw"]) elif isinstance(dst_nodata, list): internal_dst_nodata = dst_nodata[index] else: internal_dst_nodata = dst_nodata mask_values = list(values_to_mask) if include_original_nodata: if raster_metadata["nodata_value"] is not None: mask_values.append(raster_metadata["nodata_value"]) arr = raster_to_array(internal_raster, filled=True) mask = None for index, mask_value in enumerate(mask_values): if index == 0: mask = arr == mask_value else: mask = mask | arr == mask_value arr = np.ma.masked_array(arr, mask=mask, fill_value=internal_dst_nodata) if internal_in_place: for band in range(raster_metadata["bands"]): raster_band = internal_raster.GetRasterBand(band + 1) raster_band.WriteArray(arr[:, :, band]) raster_band = None else: out_name = out_names[index] remove_if_overwrite(out_name, overwrite) output_rasters.append( array_to_raster(arr, internal_raster, out_path=out_name)) if isinstance(raster, list): return output_rasters return output_rasters[0]
def calc_proximity( input_rasters, target_value=1, out_path=None, max_dist=1000, add_border=False, weighted=False, invert=False, return_array=False, postfix="_proximity", uuid=False, overwrite=True, skip_existing=False, ): """ Calculate the proximity of input_raster to values """ raster_list, path_list = ready_io_raster(input_rasters, out_path, overwrite, postfix=postfix, uuid=uuid) output = [] for index, input_raster in enumerate(raster_list): out_path = path_list[index] if skip_existing and os.path.exists(out_path): output.append(out_path) continue in_arr = raster_to_array(input_raster, filled=True) bin_arr = (in_arr != target_value).astype("uint8") bin_raster = array_to_raster(bin_arr, reference=input_raster) in_raster = open_raster(bin_raster) in_raster_path = bin_raster if add_border: border_size = 1 border_raster = add_border_to_raster( in_raster, border_size=border_size, border_value=0, overwrite=True, ) in_raster = open_raster(border_raster) gdal.Unlink(in_raster_path) in_raster_path = border_raster src_band = in_raster.GetRasterBand(1) driver_name = "GTiff" if out_path is None else path_to_driver_raster( out_path) if driver_name is None: raise ValueError(f"Unable to parse filetype from path: {out_path}") driver = gdal.GetDriverByName(driver_name) if driver is None: raise ValueError( f"Error while creating driver from extension: {out_path}") mem_path = f"/vsimem/raster_proximity_tmp_{uuid4().int}.tif" dest_raster = driver.Create( mem_path, in_raster.RasterXSize, in_raster.RasterYSize, 1, gdal.GetDataTypeByName("Float32"), ) dest_raster.SetGeoTransform(in_raster.GetGeoTransform()) dest_raster.SetProjection(in_raster.GetProjectionRef()) dst_band = dest_raster.GetRasterBand(1) gdal.ComputeProximity( src_band, dst_band, [ f"VALUES='1'", "DISTUNITS=GEO", f"MAXDIST={max_dist}", ], ) dst_arr = dst_band.ReadAsArray() gdal.Unlink(mem_path) gdal.Unlink(in_raster_path) dst_arr = np.where(dst_arr > max_dist, max_dist, dst_arr) if invert: dst_arr = max_dist - dst_arr if weighted: dst_arr = dst_arr / max_dist if add_border: dst_arr = dst_arr[border_size:-border_size, border_size:-border_size] src_band = None dst_band = None in_raster = None dest_raster = None if return_array: output.append(dst_arr) else: array_to_raster(dst_arr, reference=input_raster, out_path=out_path) output.append(out_path) dst_arr = None if isinstance(input_rasters, list): return output return output[0]
def raster_set_nodata( raster: Union[List[Union[gdal.Dataset, str]], gdal.Dataset, str], dst_nodata: Union[float, int, str, list, None], out_path: Union[list, str, None] = None, overwrite: bool = True, in_place: bool = False, prefix: str = "", postfix: str = "_nodata_set", opened: bool = False, creation_options: list = [], ) -> Union[list, gdal.Dataset, str]: """Sets all the nodata from a raster or a list of rasters. Args: raster (path | raster | list): The raster(s) to retrieve nodata values from. dst_nodata (float, int, str, None): The target nodata value. If 'infer' the nodata value is set based on the input datatype. A list of nodata values can be based matching the amount of input rasters. If multiple nodata values should be set, use raster_mask_values. **kwargs: out_path (path | list | None): The destination of the changed rasters. If out_paths are specified, in_place is automatically set to False. The path can be a folder. in_place (bool): Should the rasters be changed in_place or copied? prefix (str): Prefix to add the the output if a folder is specified in out_path. postfix (str): Postfix to add the the output if a folder is specified in out_path. Returns: Returns the rasters with nodata set. If in_place is True a reference to the changed orignal is returned, otherwise a copied memory raster or the path to the generated raster is outputted. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check(dst_nodata, [float, int, str, list], "dst_nodata", allow_none=True) type_check(out_path, [list, str], "out_path", allow_none=True) type_check(overwrite, [bool], "overwrite") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") type_check(opened, [bool], "opened") type_check(creation_options, [list], "creation_options") rasters, out_names = ready_io_raster(raster, out_path, overwrite, prefix, postfix) rasters_metadata: List[Metadata_raster] = [] internal_dst_nodata = None if isinstance(dst_nodata, str) and dst_nodata != "infer": raise ValueError(f"Invalid dst_nodata value. {dst_nodata}") if isinstance(dst_nodata, list): if not isinstance(raster, list) or len(dst_nodata) != len(raster): raise ValueError( "If dst_nodata is a list, raster must also be a list of equal length." ) for value in dst_nodata: if isinstance(value, (float, int, str, None)): raise ValueError("Invalid type in dst_nodata list.") if isinstance(value, str) and value != "infer": raise ValueError( "If dst_nodata is a string it must be 'infer'") output_rasters = [] for index, internal_raster in enumerate(rasters): raster_metadata = None if len(rasters_metadata) == 0: raster_metadata = raster_to_metadata(internal_raster) if not isinstance(raster_metadata, dict): raise Exception("Metadata is in the wrong format.") rasters_metadata.append(raster_metadata) else: raster_metadata = rasters_metadata[index] if dst_nodata == "infer": internal_dst_nodata = gdal_nodata_value_from_type( raster_metadata["dtype_gdal_raw"]) elif isinstance(dst_nodata, list): internal_dst_nodata = dst_nodata[index] else: internal_dst_nodata = dst_nodata if in_place: for band in range(raster_metadata["bands"]): raster_band = internal_raster.GetRasterBand(band + 1) raster_band.SetNodataValue(internal_dst_nodata) raster_band = None else: if out_path is None: raster_mem = raster_to_memory(internal_raster) raster_mem_ref = raster_to_reference(raster_mem) else: remove_if_overwrite(out_names[index], overwrite) raster_mem = raster_to_disk(internal_raster, out_names[index]) raster_mem_ref = raster_to_reference(raster_mem) for band in range(raster_metadata["bands"]): raster_band = raster_mem_ref.GetRasterBand(band + 1) raster_band.SetNodataValue(internal_dst_nodata) if isinstance(raster, list): return output_rasters return output_rasters[0]
def reproject_raster( raster: Union[List[Union[gdal.Dataset, str]], str, gdal.Dataset], projection: Union[int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], out_path: Union[List[str], str, None] = None, resample_alg: str = "nearest", copy_if_already_correct: bool = True, overwrite: bool = True, creation_options: list = [], dst_nodata: Union[str, int, float] = "infer", prefix: str = "", postfix: str = "_reprojected", ) -> Union[List[Union[gdal.Dataset, str]], gdal.Dataset, str]: """Reproject a raster(s) to a target coordinate reference system. Args: raster(s) (list, path | raster): The raster(s) to reproject. projection (str | int | vector | raster): The projection is infered from the input. The input can be: WKT proj, EPSG proj, Proj, osr proj, or read from a vector or raster datasource either from path or in-memory. **kwargs: out_path (list, path | None): The destination to save to. If None then the output is an in-memory raster. resample_alg (str): The algorithm to resample the raster. The following are available: 'nearest', 'bilinear', 'cubic', 'cubicSpline', 'lanczos', 'average', 'mode', 'max', 'min', 'median', 'q1', 'q3', 'sum', 'rms'. overwite (bool): Is it possible to overwrite the out_path if it exists. creation_options (list): A list of options for the GDAL creation. Only used if an outpath is specified. Defaults are: "TILED=YES" "NUM_THREADS=ALL_CPUS" "BIGG_TIF=YES" "COMPRESS=LZW" dst_nodata (str | int | float): If dst_nodata is 'infer' the destination nodata is the src_nodata if one exists, otherwise it's automatically chosen based on the datatype. If an int or a float is given, it is used as the output nodata. Returns: An in-memory raster. If an out_path is given the output is a string containing the path to the newly created raster. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check( projection, [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], "projection", ) type_check(out_path, [list, str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") raster_list, path_list = ready_io_raster(raster, out_path, overwrite, prefix, postfix) output = [] for index, in_raster in enumerate(raster_list): output.append( internal_reproject_raster( in_raster, projection, out_path=path_list[index], resample_alg=resample_alg, copy_if_already_correct=copy_if_already_correct, overwrite=overwrite, creation_options=creation_options, dst_nodata=dst_nodata, prefix=prefix, postfix=postfix, )) if isinstance(raster, list): return output return output[0]
def internal_reproject_raster( raster: Union[str, gdal.Dataset], projection: Union[int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], out_path: Optional[str] = None, resample_alg: str = "nearest", copy_if_already_correct: bool = True, overwrite: bool = True, creation_options: list = [], dst_nodata: Union[str, int, float] = "infer", prefix: str = "", postfix: str = "_reprojected", ) -> str: """OBS: Internal. Single output. Reproject a raster(s) to a target coordinate reference system. """ type_check(raster, [str, gdal.Dataset], "raster") type_check( projection, [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], "projection", ) type_check(out_path, [str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(copy_if_already_correct, [bool], "copy_if_already_correct") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") raster_list, path_list = ready_io_raster(raster, out_path, overwrite, prefix, postfix) out_name = path_list[0] ref = open_raster(raster_list[0]) metadata = raster_to_metadata(ref) out_creation_options = default_options(creation_options) out_format = path_to_driver_raster(out_name) original_projection = parse_projection(ref) target_projection = parse_projection(projection) if not isinstance(original_projection, osr.SpatialReference): raise Exception("Error while parsing input projection.") if not isinstance(target_projection, osr.SpatialReference): raise Exception("Error while parsing target projection.") if original_projection.IsSame(target_projection): if not copy_if_already_correct: return get_raster_path(ref) src_nodata = metadata["nodata_value"] out_nodata = None if src_nodata is not None: out_nodata = src_nodata else: if dst_nodata == "infer": out_nodata = gdal_nodata_value_from_type( metadata["datatype_gdal_raw"]) elif isinstance(dst_nodata, str): raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}") else: out_nodata = dst_nodata remove_if_overwrite(out_path, overwrite) reprojected = gdal.Warp( out_name, ref, format=out_format, srcSRS=original_projection, dstSRS=target_projection, resampleAlg=translate_resample_method(resample_alg), creationOptions=out_creation_options, srcNodata=metadata["nodata_value"], dstNodata=out_nodata, multithread=True, ) if reprojected is None: raise Exception(f"Error while reprojecting raster: {raster}") return out_name
def warp_raster( raster: Union[List[Union[gdal.Dataset, str]], str, gdal.Dataset], out_path: Optional[Union[List[str], str]] = None, projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference]] = None, clip_geom: Optional[Union[str, ogr.DataSource]] = None, target_size: Optional[Union[Tuple[Number], Number]] = None, target_in_pixels: bool = False, resample_alg: str = "nearest", crop_to_geom: bool = True, all_touch: bool = True, adjust_bbox: bool = True, overwrite: bool = True, creation_options: Union[list, None] = None, src_nodata: Union[str, int, float] = "infer", dst_nodata: Union[str, int, float] = "infer", layer_to_clip: int = 0, prefix: str = "", postfix: str = "_resampled", ) -> Union[List[str], str]: """Warps a raster into a target raster Please be aware that all_touch does not work if target_size is set. If all_touch is required while resampling. Do it in two steps: resample -> warp or resample -> clip. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check(out_path, [list, str], "out_path", allow_none=True) type_check( projection, [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], "projection", allow_none=True, ) type_check(clip_geom, [str, ogr.DataSource], "clip_geom", allow_none=True) type_check( target_size, [tuple, int, float, str, gdal.Dataset], "target_size", allow_none=True, ) type_check(target_in_pixels, [bool], "target_in_pixels") type_check(resample_alg, [str], "resample_alg") type_check(crop_to_geom, [bool], "crop_to_geom") type_check(all_touch, [bool], "all_touch") type_check(adjust_bbox, [bool], "adjust_bbox") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list, None], "creation_options") type_check(src_nodata, [str, int, float], "src_nodata") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(layer_to_clip, [int], "layer_to_clip") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") if creation_options is None: creation_options = [] raster_list, path_list = ready_io_raster(raster, out_path, overwrite, prefix, postfix) output = [] for index, in_raster in enumerate(raster_list): output.append( _warp_raster( in_raster, out_path=path_list[index], projection=projection, clip_geom=clip_geom, target_size=target_size, target_in_pixels=target_in_pixels, resample_alg=resample_alg, crop_to_geom=crop_to_geom, all_touch=all_touch, adjust_bbox=adjust_bbox, overwrite=overwrite, creation_options=creation_options, src_nodata=src_nodata, dst_nodata=dst_nodata, layer_to_clip=layer_to_clip, prefix=prefix, postfix=postfix, )) if isinstance(raster, list): return output return output[0]
def _warp_raster( raster: Union[str, gdal.Dataset], out_path: Optional[str] = None, projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference]] = None, clip_geom: Optional[Union[str, ogr.DataSource]] = None, target_size: Optional[Union[Tuple[Number], Number]] = None, target_in_pixels: bool = False, resample_alg: str = "nearest", crop_to_geom: bool = True, all_touch: bool = True, adjust_bbox: bool = True, overwrite: bool = True, creation_options: Union[list, None] = None, src_nodata: Union[str, int, float] = "infer", dst_nodata: Union[str, int, float] = "infer", layer_to_clip: int = 0, prefix: str = "", postfix: str = "_resampled", ) -> str: """WARNING: INTERNAL. DO NOT USE.""" raster_list, path_list = ready_io_raster(raster, out_path, overwrite, prefix, postfix) origin = open_raster(raster_list[0]) out_name = path_list[0] raster_metadata = raster_to_metadata(origin, create_geometry=True) # options warp_options = [] if all_touch: warp_options.append("CUTLINE_ALL_TOUCHED=TRUE") else: warp_options.append("CUTLINE_ALL_TOUCHED=FALSE") origin_projection: osr.SpatialReference = raster_metadata["projection_osr"] origin_extent: ogr.Geometry = raster_metadata["extent_geom_latlng"] target_projection = origin_projection if projection is not None: target_projection = parse_projection(projection) if clip_geom is not None: if is_raster(clip_geom): opened_raster = open_raster(clip_geom) clip_metadata_raster = raster_to_metadata(opened_raster, create_geometry=True) clip_ds = clip_metadata_raster["extent_datasource"] clip_metadata = internal_vector_to_metadata(clip_ds, create_geometry=True) elif is_vector(clip_geom): clip_ds = open_vector(clip_geom) clip_metadata = internal_vector_to_metadata(clip_ds, create_geometry=True) else: if file_exists(clip_geom): raise ValueError(f"Unable to parse clip geometry: {clip_geom}") else: raise ValueError(f"Unable to find clip geometry {clip_geom}") if layer_to_clip > (clip_metadata["layer_count"] - 1): raise ValueError("Requested an unable layer_to_clip.") clip_projection = clip_metadata["projection_osr"] clip_extent = clip_metadata["extent_geom_latlng"] # Fast check: Does the extent of the two inputs overlap? if not origin_extent.Intersects(clip_extent): raise Exception("Clipping geometry did not intersect raster.") # Check if projections match, otherwise reproject target geom. if not target_projection.IsSame(clip_projection): clip_metadata["extent"] = reproject_extent( clip_metadata["extent"], clip_projection, target_projection, ) # The extent needs to be reprojected to the target. # this ensures that adjust_bbox works. x_min_og, y_max_og, x_max_og, y_min_og = reproject_extent( raster_metadata["extent"], origin_projection, target_projection, ) output_bounds = (x_min_og, y_min_og, x_max_og, y_max_og ) # gdal_warp format if crop_to_geom: if adjust_bbox: output_bounds = align_bbox( raster_metadata["extent"], clip_metadata["extent"], raster_metadata["pixel_width"], raster_metadata["pixel_height"], warp_format=True, ) else: x_min_og, y_max_og, x_max_og, y_min_og = clip_metadata[ "extent"] output_bounds = ( x_min_og, y_min_og, x_max_og, y_max_og, ) # gdal_warp format if clip_metadata["layer_count"] > 1: clip_ds = vector_to_memory( clip_ds, memory_path=f"clip_geom_{uuid4().int}.gpkg", layer_to_extract=layer_to_clip, ) elif not isinstance(clip_ds, str): clip_ds = vector_to_memory( clip_ds, memory_path=f"clip_geom_{uuid4().int}.gpkg", ) if clip_ds is None: raise ValueError(f"Unable to parse input clip geom: {clip_geom}") x_res, y_res, x_pixels, y_pixels = raster_size_from_list( target_size, target_in_pixels) out_format = path_to_driver_raster(out_name) out_creation_options = default_options(creation_options) # nodata out_nodata = None if src_nodata is not None: out_nodata = raster_metadata["nodata_value"] else: if dst_nodata == "infer": out_nodata = gdal_nodata_value_from_type( raster_metadata["datatype_gdal_raw"]) else: out_nodata = dst_nodata # Removes file if it exists and overwrite is True. remove_if_overwrite(out_path, overwrite) warped = gdal.Warp( out_name, origin, xRes=x_res, yRes=y_res, width=x_pixels, height=y_pixels, cutlineDSName=clip_ds, outputBounds=output_bounds, format=out_format, srcSRS=origin_projection, dstSRS=target_projection, resampleAlg=translate_resample_method(resample_alg), creationOptions=out_creation_options, warpOptions=warp_options, srcNodata=src_nodata, dstNodata=out_nodata, targetAlignedPixels=False, cropToCutline=False, multithread=True, ) if warped is None: raise Exception(f"Error while warping raster: {raster}") return out_name
def internal_resample_raster( raster: Union[str, gdal.Dataset], target_size: Union[tuple, int, float, str, gdal.Dataset], target_in_pixels: bool = False, out_path: Optional[str] = None, resample_alg: str = "nearest", overwrite: bool = True, creation_options: list = [], dtype=None, dst_nodata: Union[str, int, float] = "infer", prefix: str = "", postfix: str = "_resampled", add_uuid: bool = False, ) -> str: """OBS: Internal. Single output. Reprojects a raster given a target projection. Beware if your input is in latitude and longitude, you'll need to specify the target_size in degrees as well. """ type_check(raster, [str, gdal.Dataset], "raster") type_check(target_size, [tuple, int, float, str, gdal.Dataset], "target_size") type_check(target_in_pixels, [bool], "target_in_pixels") type_check(out_path, [list, str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") raster_list, path_list = ready_io_raster( raster, out_path, overwrite=overwrite, prefix=prefix, postfix=postfix, uuid=add_uuid, ) ref = open_raster(raster_list[0]) metadata = raster_to_metadata(ref) out_name = path_list[0] x_res, y_res, x_pixels, y_pixels = raster_size_from_list( target_size, target_in_pixels) out_creation_options = default_options(creation_options) out_format = path_to_driver_raster(out_name) src_nodata = metadata["nodata_value"] out_nodata = None if src_nodata is not None: out_nodata = src_nodata else: if dst_nodata == "infer": out_nodata = gdal_nodata_value_from_type( metadata["datatype_gdal_raw"]) elif isinstance(dst_nodata, str): raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}") else: out_nodata = dst_nodata remove_if_overwrite(out_path, overwrite) resampled = gdal.Warp( out_name, ref, width=x_pixels, height=y_pixels, xRes=x_res, yRes=y_res, format=out_format, outputType=translate_datatypes(dtype), resampleAlg=translate_resample_method(resample_alg), creationOptions=out_creation_options, srcNodata=metadata["nodata_value"], dstNodata=out_nodata, multithread=True, ) if resampled is None: raise Exception(f"Error while resampling raster: {out_name}") return out_name
def resample_raster( raster: Union[List[Union[str, gdal.Dataset]], str, gdal.Dataset], target_size: Union[tuple, int, float, str, gdal.Dataset], target_in_pixels: bool = False, out_path: Optional[Union[list, str]] = None, resample_alg: str = "nearest", overwrite: bool = True, creation_options: list = [], dtype=None, dst_nodata: Union[str, int, float] = "infer", prefix: str = "", postfix: str = "_resampled", ) -> Union[List[str], str]: """Reprojects a raster given a target projection. Beware if your input is in latitude and longitude, you'll need to specify the target_size in degrees as well. Args: raster (list, path | raster): The raster to reproject. target_size (str | int | vector | raster): The target resolution of the raster. In the same unit as the projection of the raster. It's better to reproject to a projected coordinate system for resampling. If a raster is the target_size the function will read the pixel size from that raster. **kwargs: out_path (path | None): The destination to save to. If None then the output is an in-memory raster. resample_alg (str): The algorithm to resample the raster. The following are available: 'nearest', 'bilinear', 'cubic', 'cubicSpline', 'lanczos', 'average', 'mode', 'max', 'min', 'median', 'q1', 'q3', 'sum', 'rms'. overwite (bool): Is it possible to overwrite the out_path if it exists. creation_options (list): A list of options for the GDAL creation. Only used if an outpath is specified. Defaults are: "TILED=YES" "NUM_THREADS=ALL_CPUS" "BIGG_TIF=YES" "COMPRESS=LZW" dst_nodata (str | int | float): If dst_nodata is 'infer' the destination nodata is the src_nodata if one exists, otherwise it's automatically chosen based on the datatype. If an int or a float is given, it is used as the output nodata. Returns: An in-memory raster. If an out_path is given the output is a string containing the path to the newly created raster. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check(target_size, [tuple, int, float, str, gdal.Dataset], "target_size") type_check(target_in_pixels, [bool], "target_in_pixels") type_check(out_path, [list, str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") raster_list, path_list = ready_io_raster(raster, out_path, overwrite, prefix, postfix) resampled_rasters = [] for index, in_raster in enumerate(raster_list): resampled_rasters.append( internal_resample_raster( in_raster, target_size, target_in_pixels=target_in_pixels, out_path=path_list[index], resample_alg=resample_alg, overwrite=overwrite, creation_options=creation_options, dtype=dtype, dst_nodata=dst_nodata, prefix=prefix, postfix=postfix, )) if isinstance(raster, list): return resampled_rasters return resampled_rasters[0]
def align_rasters( rasters: List[Union[str, gdal.Dataset]], out_path: Optional[Union[List[str], str]] = None, master: Optional[Union[gdal.Dataset, str]] = None, postfix: str = "_aligned", bounding_box: Union[str, gdal.Dataset, ogr.DataSource, list, tuple] = "intersection", resample_alg: str = "nearest", target_size: Optional[Union[tuple, list, int, float, str, gdal.Dataset]] = None, target_in_pixels: bool = False, projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference]] = None, overwrite: bool = True, creation_options: list = [], src_nodata: Optional[Union[str, int, float]] = "infer", dst_nodata: Optional[Union[str, int, float]] = "infer", prefix: str = "", ram=8000, skip_existing=False, ) -> List[str]: type_check(rasters, [list], "rasters") type_check(out_path, [list, str], "out_path", allow_none=True) type_check(master, [list, str], "master", allow_none=True) type_check(bounding_box, [str, gdal.Dataset, ogr.DataSource, list, tuple], "bounding_box") type_check(resample_alg, [str], "resample_alg") type_check( target_size, [tuple, list, int, float, str, gdal.Dataset], "target_size", allow_none=True, ) type_check( target_in_pixels, [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference], "target_in_pixels", allow_none=True, ) type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(src_nodata, [str, int, float], "src_nodata", allow_none=True) type_check(dst_nodata, [str, int, float], "dst_nodata", allow_none=True) type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") raster_list, path_list = ready_io_raster( rasters, out_path, overwrite=overwrite, prefix=prefix, postfix=postfix, uuid=False, ) x_pixels = None y_pixels = None x_res = None y_res = None target_projection = None target_bounds = None reprojected_rasters: List[str] = [] # Read the metadata for each raster. # Catalogue the used projections, to choose the most common one if necessary. used_projections: List[dict] = [] metadata: List[str] = [] for raster in rasters: meta = raster_to_metadata(raster) metadata.append(meta) used_projections.append(meta["projection"]) # If there is a master layer, copy information from that layer. if master is not None: master_metadata = raster_to_metadata(master) target_projection = master_metadata["projection_osr"] x_min, y_max, x_max, y_min = master_metadata["extent"] # Set the target values. target_bounds = (x_min, y_min, x_max, y_max) x_res = master_metadata["pixel_width"] y_res = master_metadata["pixel_height"] x_pixels = master_metadata["width"] y_pixels = master_metadata["height"] target_size = (x_res, y_res) target_in_pixels = False # We allow overwrite of parameters specifically set. # Handle projection if projection is not None: target_projection = parse_projection(projection) # If no projection is specified, other from master or parameters. The most common one is chosen. elif target_projection is None: # Sort and count the projections projection_counter: dict = {} for proj in used_projections: if proj in projection_counter: projection_counter[proj] += 1 else: projection_counter[proj] = 1 # Choose most common projection most_common_projection = sorted(projection_counter, key=projection_counter.get, reverse=True) target_projection = parse_projection(most_common_projection[0]) if target_size is not None: # If a raster is input, use it's pixel size as target values. if isinstance(target_size, (gdal.Dataset, str)): if isinstance(target_size, str) and not is_raster(target_size): raise ValueError( f"Unable to parse the raster used for target_size: {target_size}" ) # Reprojection is necessary to ensure the correct pixel_size reprojected_target_size = internal_reproject_raster( target_size, target_projection) target_size_raster = raster_to_metadata(reprojected_target_size) # Set the target values. x_res = target_size_raster["width"] y_res = target_size_raster["height"] else: # If a list, tuple, int or float is passed. Turn them into target values. x_res, y_res, x_pixels, y_pixels = raster_size_from_list( target_size, target_in_pixels) # If nothing has been specified, we will infer the pixel_size based on the median of all input rasters. elif x_res is None and y_res is None and x_pixels is None and y_pixels is None: # Ready numpy arrays for insertion x_res_arr = np.empty(len(raster_list), dtype="float32") y_res_arr = np.empty(len(raster_list), dtype="float32") for index, raster in enumerate(raster_list): # It is necessary to reproject each raster, as pixel height and width might be different after projection. reprojected = internal_reproject_raster(raster, target_projection) target_size_raster = raster_to_metadata(reprojected) # Add the pixel sizes to the numpy arrays x_res_arr[index] = target_size_raster["pixel_width"] y_res_arr[index] = target_size_raster["pixel_height"] # Keep track of the reprojected arrays so we only reproject rasters once. reprojected_rasters.append(reprojected) # Use the median values of pixel sizes as target values. x_res = np.median(x_res_arr) y_res = np.median(y_res_arr) if target_bounds is None: # If a bounding box is supplied, simply use that one. It must be in the target projection. if isinstance(bounding_box, (list, tuple)): if len(bounding_box) != 4: raise ValueError( "bounding_box as a list/tuple must have 4 values.") target_bounds = bounding_box # If the bounding box is a raster. Take the extent and reproject it to the target projection. elif is_raster(bounding_box): reprojected_bbox_raster = raster_to_metadata( internal_reproject_raster(bounding_box, target_projection)) x_min, y_max, x_max, y_min = reprojected_bbox_raster["extent"] # add to target values. target_bounds = (x_min, y_min, x_max, y_max) # If the bounding box is a raster. Take the extent and reproject it to the target projection. elif is_vector(bounding_box): reprojected_bbox_vector = internal_vector_to_metadata( internal_reproject_vector(bounding_box, target_projection)) x_min, y_max, x_max, y_min = reprojected_bbox_vector["extent"] # add to target values. target_bounds = (x_min, y_min, x_max, y_max) # If the bounding box is a string, we either take the union or the intersection of all the # bounding boxes of the input rasters. elif isinstance(bounding_box, str): if bounding_box == "intersection" or bounding_box == "union": extents = [] # If the rasters have not been reprojected, reproject them now. if len(reprojected_rasters) != len(raster_list): reprojected_rasters = [] for raster in raster_list: raster_metadata = raster_to_metadata(raster) if raster_metadata["projection_osr"].IsSame( target_projection): reprojected_rasters.append(raster) else: reprojected = internal_reproject_raster( raster, target_projection) reprojected_rasters.append(reprojected) # Add the extents of the reprojected rasters to the extents list. for reprojected_raster in reprojected_rasters: reprojected_raster_metadata = dict( raster_to_metadata(reprojected_raster)) extents.append(reprojected_raster_metadata["extent"]) # Placeholder values x_min, y_max, x_max, y_min = extents[0] # Loop the extents. Narrowing if intersection, expanding if union. for index, extent in enumerate(extents): if index == 0: continue if bounding_box == "intersection": if extent[0] > x_min: x_min = extent[0] if extent[1] < y_max: y_max = extent[1] if extent[2] < x_max: x_max = extent[2] if extent[3] > y_min: y_min = extent[3] elif bounding_box == "union": if extent[0] < x_min: x_min = extent[0] if extent[1] > y_max: y_max = extent[1] if extent[2] > x_max: x_max = extent[2] if extent[3] < y_min: y_min = extent[3] # Add to target values. target_bounds = (x_min, y_min, x_max, y_max) else: raise ValueError( f"Unable to parse or infer target_bounds: {target_bounds}") else: raise ValueError( f"Unable to parse or infer target_bounds: {target_bounds}") """ If the rasters have not been reprojected, we reproject them now. The reprojection is necessary as warp has to be a two step process in order to align the rasters properly. This might not be necessary in a future version of gdal. """ if len(reprojected_rasters) != len(raster_list): reprojected_rasters = [] for raster in raster_list: raster_metadata = raster_to_metadata(raster) # If the raster is already the correct projection, simply append the raster. if raster_metadata["projection_osr"].IsSame(target_projection): reprojected_rasters.append(raster) else: reprojected = internal_reproject_raster( raster, target_projection) reprojected_rasters.append(reprojected) # If any of the target values are still undefined. Throw an error! if target_projection is None or target_bounds is None: raise Exception( "Error while preparing the target projection or bounds.") if x_res is None and y_res is None and x_pixels is None and y_pixels is None: raise Exception("Error while preparing the target pixel size.") # This is the list of rasters to return. If output is not memory, it's a list of paths. return_list: List[str] = [] for index, raster in enumerate(reprojected_rasters): raster_metadata = raster_to_metadata(raster) out_name = path_list[index] out_format = path_to_driver_raster(out_name) if skip_existing and os.path.exists(out_name): return_list.append(out_name) continue # Handle nodata. out_src_nodata = None out_dst_nodata = None if src_nodata == "infer": out_src_nodata = raster_metadata["nodata_value"] if out_src_nodata is None: out_src_nodata = gdal_nodata_value_from_type( raster_metadata["datatype_gdal_raw"]) elif src_nodata == None: out_src_nodata = None elif not isinstance(src_nodata, str): out_src_nodata = src_nodata if dst_nodata == "infer": out_dst_nodata = out_src_nodata elif dst_nodata == False or dst_nodata == None: out_dst_nodata = None elif src_nodata == None: out_dst_nodata = None elif not isinstance(dst_nodata, str): out_dst_nodata = dst_nodata # Removes file if it exists and overwrite is True. remove_if_overwrite(out_name, overwrite) # Hand over to gdal.Warp to do the heavy lifting! warped = gdal.Warp( out_name, raster, xRes=x_res, yRes=y_res, width=x_pixels, height=y_pixels, dstSRS=target_projection, outputBounds=target_bounds, format=out_format, resampleAlg=translate_resample_method(resample_alg), creationOptions=default_options(creation_options), srcNodata=out_src_nodata, dstNodata=out_dst_nodata, targetAlignedPixels=False, cropToCutline=False, multithread=True, warpMemoryLimit=ram, ) if warped == None: raise Exception("Error while warping rasters.") return_list.append(out_name) if not rasters_are_aligned(return_list, same_extent=True): raise Exception("Error while aligning rasters. Output is not aligned") return return_list
def _clip_raster( raster: Union[str, gdal.Dataset], clip_geom: Union[str, ogr.DataSource, gdal.Dataset], out_path: Optional[str] = None, resample_alg: str = "nearest", crop_to_geom: bool = True, adjust_bbox: bool = True, all_touch: bool = True, overwrite: bool = True, creation_options: list = [], dst_nodata: Union[str, int, float] = "infer", layer_to_clip: int = 0, prefix: str = "", postfix: str = "_clipped", verbose: int = 1, uuid: bool = False, ram: int = 8000, ) -> str: """OBS: Internal. Single output. Clips a raster(s) using a vector geometry or the extents of a raster. """ type_check(raster, [str, gdal.Dataset], "raster") type_check(clip_geom, [str, ogr.DataSource, gdal.Dataset], "clip_geom") type_check(out_path, [str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(crop_to_geom, [bool], "crop_to_geom") type_check(adjust_bbox, [bool], "adjust_bbox") type_check(all_touch, [bool], "all_touch") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(layer_to_clip, [int], "layer_to_clip") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") type_check(verbose, [int], "verbose") type_check(uuid, [bool], "uuid") _, path_list = ready_io_raster(raster, out_path, overwrite=overwrite, prefix=prefix, postfix=postfix, uuid=uuid) if out_path is not None: if "vsimem" not in out_path: if not os.path.isdir(os.path.split(os.path.normpath(out_path))[0]): raise ValueError( f"out_path folder does not exists: {out_path}") # Input is a vector. if is_vector(clip_geom): clip_ds = open_vector(clip_geom) clip_metadata = internal_vector_to_metadata( clip_ds, process_layer=layer_to_clip) if clip_metadata["layer_count"] > 1: clip_ds = internal_vector_to_memory(clip_ds, layer_to_extract=layer_to_clip) if isinstance(clip_ds, ogr.DataSource): clip_ds = clip_ds.GetName() # Input is a raster (use extent) elif is_raster(clip_geom): clip_metadata = raster_to_metadata(clip_geom, create_geometry=True) clip_metadata["layer_count"] = 1 clip_ds = clip_metadata["extent_datasource"].GetName() else: if file_exists(clip_geom): raise ValueError(f"Unable to parse clip geometry: {clip_geom}") else: raise ValueError(f"Unable to locate clip geometry {clip_geom}") if layer_to_clip > (clip_metadata["layer_count"] - 1): raise ValueError("Requested an unable layer_to_clip.") if clip_ds is None: raise ValueError(f"Unable to parse input clip geom: {clip_geom}") clip_projection = clip_metadata["projection_osr"] clip_extent = clip_metadata["extent"] # options warp_options = [] if all_touch: warp_options.append("CUTLINE_ALL_TOUCHED=TRUE") else: warp_options.append("CUTLINE_ALL_TOUCHED=FALSE") origin_layer = open_raster(raster) raster_metadata = raster_to_metadata(raster) origin_projection = raster_metadata["projection_osr"] origin_extent = raster_metadata["extent"] # Check if projections match, otherwise reproject target geom. if not origin_projection.IsSame(clip_projection): clip_metadata["extent"] = reproject_extent( clip_metadata["extent"], clip_projection, origin_projection, ) # Fast check: Does the extent of the two inputs overlap? if not gdal_bbox_intersects(origin_extent, clip_extent): raise Exception("Geometries did not intersect.") output_bounds = raster_metadata["extent_gdal_warp"] if crop_to_geom: if adjust_bbox: output_bounds = align_bbox( raster_metadata["extent"], clip_metadata["extent"], raster_metadata["pixel_width"], raster_metadata["pixel_height"], warp_format=True, ) else: output_bounds = clip_metadata["extent_gdal_warp"] # formats out_name = path_list[0] out_format = path_to_driver_raster(out_name) out_creation_options = default_options(creation_options) # nodata src_nodata = raster_metadata["nodata_value"] out_nodata = None if src_nodata is not None: out_nodata = src_nodata else: if dst_nodata == "infer": out_nodata = gdal_nodata_value_from_type( raster_metadata["datatype_gdal_raw"]) elif dst_nodata is None: out_nodata = None elif isinstance(dst_nodata, (int, float)): out_nodata = dst_nodata else: raise ValueError(f"Unable to parse nodata_value: {dst_nodata}") # Removes file if it exists and overwrite is True. remove_if_overwrite(out_path, overwrite) if verbose == 0: gdal.PushErrorHandler("CPLQuietErrorHandler") clipped = gdal.Warp( out_name, origin_layer, format=out_format, resampleAlg=translate_resample_method(resample_alg), targetAlignedPixels=False, outputBounds=output_bounds, xRes=raster_metadata["pixel_width"], yRes=raster_metadata["pixel_height"], cutlineDSName=clip_ds, cropToCutline= False, # GDAL does this incorrectly when targetAlignedPixels is True. creationOptions=out_creation_options, warpMemoryLimit=ram, warpOptions=warp_options, srcNodata=raster_metadata["nodata_value"], dstNodata=out_nodata, multithread=True, ) if verbose == 0: gdal.PopErrorHandler() if clipped is None: raise Exception("Error while clipping raster.") return out_name
def clip_raster( raster: Union[List[Union[str, gdal.Dataset]], str, gdal.Dataset], clip_geom: Union[str, ogr.DataSource, gdal.Dataset], out_path: Union[List[str], str, None] = None, resample_alg: str = "nearest", crop_to_geom: bool = True, adjust_bbox: bool = True, all_touch: bool = True, prefix: str = "", postfix: str = "_clipped", overwrite: bool = True, creation_options: list = [], dst_nodata: Union[str, int, float] = "infer", layer_to_clip: int = 0, verbose: int = 1, uuid: bool = False, ram: int = 8000, ) -> Union[list, gdal.Dataset, str]: """Clips a raster(s) using a vector geometry or the extents of a raster. Args: raster(s) (list, path | raster): The raster(s) to clip. clip_geom (path | vector | raster): The geometry to use to clip the raster **kwargs: out_path (list, path | None): The destination to save to. If None then the output is an in-memory raster. resample_alg (str): The algorithm to resample the raster. The following are available: 'nearest', 'bilinear', 'cubic', 'cubicSpline', 'lanczos', 'average', 'mode', 'max', 'min', 'median', 'q1', 'q3', 'sum', 'rms'. crop_to_geom (bool): Should the extent of the raster be clipped to the extent of the clipping geometry. all_touch (bool): Should all the pixels touched by the clipped geometry be included or only those which centre lie within the geometry. overwite (bool): Is it possible to overwrite the out_path if it exists. creation_options (list): A list of options for the GDAL creation. Only used if an outpath is specified. Defaults are: "TILED=YES" "NUM_THREADS=ALL_CPUS" "BIGG_TIF=YES" "COMPRESS=LZW" dst_nodata (str | int | float): If dst_nodata is 'infer' the destination nodata is the src_nodata if one exists, otherwise it's automatically chosen based on the datatype. If an int or a float is given, it is used as the output nodata. layer_to_clip (int): The layer in the input vector to use for clipping. Returns: An in-memory raster. If an out_path is given the output is a string containing the path to the newly created raster. """ type_check(raster, [list, str, gdal.Dataset], "raster") type_check(clip_geom, [str, ogr.DataSource, gdal.Dataset], "clip_geom") type_check(out_path, [list, str], "out_path", allow_none=True) type_check(resample_alg, [str], "resample_alg") type_check(crop_to_geom, [bool], "crop_to_geom") type_check(adjust_bbox, [bool], "adjust_bbox") type_check(all_touch, [bool], "all_touch") type_check(dst_nodata, [str, int, float], "dst_nodata") type_check(layer_to_clip, [int], "layer_to_clip") type_check(overwrite, [bool], "overwrite") type_check(creation_options, [list], "creation_options") type_check(prefix, [str], "prefix") type_check(postfix, [str], "postfix") type_check(verbose, [int], "verbose") type_check(uuid, [bool], "uuid") raster_list, path_list = ready_io_raster( raster, out_path, overwrite=overwrite, prefix=prefix, postfix=postfix, uuid=uuid, ) output = [] for index, in_raster in enumerate(raster_list): output.append( _clip_raster( in_raster, clip_geom, out_path=path_list[index], resample_alg=resample_alg, crop_to_geom=crop_to_geom, adjust_bbox=adjust_bbox, all_touch=all_touch, dst_nodata=dst_nodata, layer_to_clip=layer_to_clip, overwrite=overwrite, creation_options=creation_options, prefix=prefix, postfix=postfix, verbose=verbose, ram=ram, )) if isinstance(raster, list): return output return output[0]