for Infile in Jinfile: from Raw_text_to_Tree_root import Raw_text_to_Tree_root To_Tree = Raw_text_to_Tree_root(Infile, ".") # from Tree_to_D1H_CutnGenerate import REGENERATE_TREE_WITH_CUT # NEW_Tree_PATH = REGENERATE_TREE_WITH_CUT(To_Tree,".") NEW_Tree_PATH = To_Tree #from Tree_to_D2H_Convert import CONVERT_WORKING2D from Tree_to_D1H_Convert import CONVERT_WORKING HistROOT_PATH = CONVERT_WORKING(NEW_Tree_PATH, "") #CONVERT_WORKING2D(NEW_Tree_PATH,"") sys.path.append( "/Users/leejunho/Desktop/git/python3Env/group_study/fruit_team/ROOT/Project/functions/rootHist_TXT/func" ) from D1H_rootHist_TXT_conversion import D1H_roothist_to_txt TXT_FILE_LIST = D1H_roothist_to_txt(HistROOT_PATH, "") sys.path.append( "/Users/leejunho/Desktop/git/python3Env/group_study/project_pre/func") from c1_basic_statistic import * from c2_basic_histo_plotting import Basic_histo from c3_Fit_Gaus_histo_plotting import Fit_Gaus_histo for Input_file in TXT_FILE_LIST: print("The file Name is :", Input_file) Basic_histo(Input_file) Fit_Gaus_histo(Input_file) # gBenchmark.Show("All in One")
from c4_Fit_Poisson_histo_plotting import Fit_Poisson_histo from c5_single_sample_mean_Zdistribution import Fit_Sample_Gaus_histo from c5_single_sample_mean_Tdistribution import t_distribution from c7_single_sample_variance_distribution import Sample_Variance #for Input_file in TXT_FILE_LIST: for ij in range(len(TXT_FILE_LIST)): print("The file Name is :", TXT_FILE_LIST[ij]) # MODE = most_frequent_bin(TXT_FILE_LIST[ij]); print("MODE :",MODE) # DATA_RANGE = c1_data_range(TXT_FILE_LIST[ij]); print("DATA_RANGE :",DATA_RANGE) # MEDIAN = c1_median(TXT_FILE_LIST[ij]); print("MEDIAN :",MEDIAN) # Total_ENTRY = c1_total_ENTRY(TXT_FILE_LIST[ij]); print("Total_ENTRY :",Total_ENTRY) # MEAN = c1_mean(TXT_FILE_LIST[ij]); print("MEAN :",MEAN) # VARIANCE = c1_variance(TXT_FILE_LIST[ij]); print("VARIANCE :",VARIANCE) # STD = c1_standard_deviation(TXT_FILE_LIST[ij]); print("STD :",STD) # print("\n") Basic_histo(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij]) # Fit_Poisson_histo(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij]) Fit_Sample_Gaus_histo(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij], exp_Mean_error=10) # t_distribution(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij], Show_T=True, Show_sample=True, Show_Gaus=False) t_distribution(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij], Show_T=True, Show_sample=True, Show_Gaus=True) Sample_Variance(TXT_FILE_LIST[ij], TXT_FILE_LIST_largeBin[ij]) #os.system("rm -rf python_plots") #os.system("rm -rf python_hist_texts") os.system("mkdir python_plots")
import sys import numpy as np sys.path.append("../functions") Project1 = "project1_1M.txt" ''' from c2_basic_histo_plotting import Basic_histo Basic_histo(Project1) from c3_Fit_Gaus_histo_plotting import Fit_Gaus_histo Fit_Gaus_histo(Project1,"a") ''' from c3_statistics_man import * print(n_frequent_bin(Project1, 0.5)) filename = "project1_1M.txt" infile = open("project1_1M.txt") list_file = [] for line in infile: binN, ibin, fbin, entry = line.split() list_file.append([int(binN), float(ibin), float(fbin), float(entry)]) l = [x[0] for x in list_file] entry = [x[3] for x in list_file] p1 = 0.025 p2 = 0.975 total_entry = sum(entry) print(total_entry) s_entry = 0 for i in l: