def Test_dbn_bp_MNIST():
    import input_data
    import matplotlib.pyplot as plt

    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
        mnist.test.labels

    trX = trX[:5000]
    trY = trY[:5000]
    teX = teX[:1000]
    teY = teY[:1000]
    dbn = DBN(layer_sizes=[784, 400, 100])
    # pre-training (TrainUnsupervisedDBN)
    errs = dbn.pretrain(input=trX, lr=0.1, k=1, epochs=100,
                        batch_size=100)  #, gaus=True)
    print("dbn :", errs)

    network = BP([784, 400, 100, 10])
    network.setActivation([sigmoid, sigmoid, sigmoid])  #softmax
    wList, bList = dbn.getHyperParameter()
    network.setHyperParameter(wList, bList)
    network.train(trX, trY, lr=0.1, epochs=1, batch_size=100)
    # for item in test_data:
    res = network.predict(teX)

    print(np.mean(np.argmax(teY, axis=1) == np.argmax(res, 1)))
    '''0.098'''
    def __init__(self, layer_sizes=[3, 3], bp_layer=[], rng=None):
        '''
        :param input:
        :param label:
        :param n_ins:
        :param hidden_layer_sizes:
        :param n_outs:
        :param rng: 随机数发生器
        '''
        '''说明:layer_sizes的最后一个参数,是bp_layer的第一个输入参数
        例:DBN(layer_sizes[10,10,20], bp_layer=[5,1])
        bp 是[20, 5, 1]
        '''

        self.rbm_layers = []
        self.n_layers = len(layer_sizes) - 1  # = len(self.rbm_layers)

        if rng is None:
            rng = np.random.RandomState(1234)
        '''最少为一层'''
        assert self.n_layers > 0

        # construct multi-layer
        for i in range(self.n_layers):
            # layer_size
            # construct rbm_layer
            rbm_layer = RBM(n_visible=layer_sizes[i],
                            n_hidden=layer_sizes[i + 1],
                            rng=rng)
            self.rbm_layers.append(rbm_layer)

        self.bp_layers = None
        self._n_bp_layers = len(bp_layer)
        if self._n_bp_layers > 0:
            para = [layer_sizes[-1]] + bp_layer
            self.bp_layers = BP(para)
Example #3
0
def DBN_BP_Test(seq_len, win, lr):

    data_src = LD.loadCsvData_Np("../data/co2-ppm-mauna-loa-19651980.csv", skiprows=1, ColumnList=[1])


    # Australia/US	British/US	Canadian/US	Dutch/US	French/US	German/US	Japanese/US	Swiss/US
    data_t =data_src[:,0:1].copy()
    # 数据还源时使用
    t_mean = np.mean(data_t)
    t_min = np.min(data_t)
    t_max = np.max(data_t)

    # 数据预处理
    result,x_result,y_result = LD.dataRecombine_Single(data_t, seq_len)
    # print(x_result, y_result)

    result_len = len(result)
    row = round(0.8 * result.shape[0])
    row = result_len - 87
    windowSize = row
    windowSize = win


    # 数据归一化
    # data_normalization = EvaluationIndex.归一化.normalization_max_min_负1_1(data_src)
    x_result_GY = ((x_result - t_min) / (t_max - t_min)).copy()
    y_result_GY = ((y_result - t_min) / (t_max - t_min)).copy()
    # x_result = (x_result - t_mean) / np.std(x_result)
    # y_result = (y_result - t_mean) / np.std(x_result)
    y_rbf_all = []
    y_test_all = []
    rng = np.random.RandomState(1233)

    for y_i in range(row, result_len):
        if y_i < windowSize:
            continue
        x_train = x_result_GY[y_i - windowSize:y_i]
        y_train = y_result_GY[y_i - windowSize:y_i]
        x_test = x_result_GY[y_i:y_i + 1]
        y_test = y_result_GY[y_i:y_i + 1]

        # print(x_train, y_train)
        # assert False
        net = DBN(layer_sizes=[seq_len,20,40], bp_layer=[1])
        net.pretrain(x_train,lr=lr, epochs=200)
        # net.fineTune(x_train, y_train,lr=lr, epochs=10000)
        bp = BP([seq_len,20,40, 1])
        w_list, b_list = net.getHyperParameter()
        bp.setHyperParameter(w_list, b_list)
        bp.train(x_test, y_test, lr=lr, epochs=10000)

        y_rbf = bp.predict(x_train)

        y_rbf_all.append(y_rbf)
        y_test_all.append(y_test)


    # print(np.array(y_rbf_all).ravel())
    # print(np.array(y_test_all).ravel())#, np.array(y_test_all))

    # print("全部预测RMSE")
    # y_rbf_all = np.array(y_rbf_all).ravel()
    # y_test_all = np.array(y_test_all).ravel()
    # ei = EI.evalueationIndex(y_rbf_all, y_test_all)
    # ei.show()

    import MDLearn.utils.Draw as draw
    # draw.plot_results_point(y_rbf_all, y_test_all)

    '''还原数据'''
    print("DBN_BP_Test还原预测RMSE")
    y_rbf_all = np.array(y_rbf_all)
    y_test_all = np.array(y_test_all)

    y_rbf_haunYuan = y_rbf_all * (t_max - t_min) + t_min
    y_test_haunYuan = y_test_all * (t_max - t_min) + t_min
    ei = EI.evalueationIndex(y_rbf_haunYuan, y_test_haunYuan)
    ei.show()