Example #1
0
def minimal_driver():
    DUMP_DATA = bool(int(os.environ.get("DUMP_DATA", "0")))
    n_atoms = [32768]
    n_bins = 16384
    coords = util.generate_random_coordinate_set(n_atoms)

    box = None
    # box = get_triclinic_box()
    # box = get_orthorhombic_box()
    force_triclinic = False

    # box = get_orthorhombic_triclinic_box()
    # force_triclinic = True

    histo = pydh.histograms(coords,
                            r_max,
                            n_bins,
                            box=box,
                            precision="double",
                            force_triclinic=force_triclinic,
                            n_threads=util.get_n_cpu_cores(),
                            verbose=True)

    if DUMP_DATA:
        file_name = sys._getframe().f_code.co_name + ".dat"
        util.dump_histograms(file_name, histo, r_max, n_bins)
Example #2
0
def test_generate_random_coordinate_set():
    n_atoms = [1024]
    coords = util.generate_random_coordinate_set(n_atoms=n_atoms)
    for coord_set in coords:
        # print coord_set
        assert (np.min(coord_set) >= 0.0)
        assert (np.max(coord_set) <= 1.0)
Example #3
0
def test_generate_random_coordinate_set_max():
    n_atoms = [1024]
    coord_max = (2., 3., 4.)
    coords = util.generate_random_coordinate_set(n_atoms=n_atoms,
                                                 coord_max=coord_max)
    for coord_set in coords:
        # print coord_set
        assert (np.min(coord_set) >= 0.0)
        assert (np.all(np.max(coord_set, axis=0) <= coord_max))
Example #4
0
def test_generate_random_coordinate_set_min():
    n_atoms = [1024]
    coord_min = (-1., -2., -3.)
    coords = util.generate_random_coordinate_set(n_atoms=n_atoms,
                                                 coord_min=coord_min)
    for coord_set in coords:
        # print coord_set
        assert (np.all(np.min(coord_set, axis=0) >= coord_min))
        assert (np.max(coord_set) <= 1.0)
Example #5
0
def fixture_medium_manybins():
    global testcase_medium_manybins
    if testcase_medium_manybins is None:
        n_atoms = [3000, 5000, 3500]
        n_bins = 68000
        coords = util.generate_random_coordinate_set(n_atoms)
        histo_ref = dist.histograms(coords, r_max, n_bins)
        testcase_medium_manybins = (n_atoms, n_bins, coords, histo_ref)
    return testcase_medium_manybins
Example #6
0
def fixture_small_invalid():
    global testcase_small_invalid
    if testcase_small_invalid is None:
        n_atoms = [2000, 1000]
        n_bins = 1000
        coords = util.generate_random_coordinate_set(n_atoms,
                                                     blowup_factor=3.14)
        histo_ref = None
        testcase_small_invalid = (n_atoms, n_bins, coords, histo_ref)
    return testcase_small_invalid
Example #7
0
def fixture_small():
    """Create a reference case using the very first dist implementation."""
    global testcase_small
    if testcase_small is None:
        n_atoms = [2847, 3918]
        n_bins = 1000
        coords = util.generate_random_coordinate_set(n_atoms)
        histo = dist.histograms(coords, r_max, n_bins)
        # if DUMP_DATA:
        #     file_name = sys._getframe().f_code.co_name + ".dat"
        #     util.dump_histograms(file_name, histo, r_max, n_bins)
        testcase_small = (n_atoms, n_bins, coords, histo)
    return testcase_small
Example #8
0
 def fixture_large():
     global testcase_large
     if testcase_large is None:
         n_atoms = [105000, 110000, 133000]
         n_bins = 16000
         coords = util.generate_random_coordinate_set(n_atoms)
         # --- note that we use pydh to generate the test dataset
         histo_ref = pydh.histograms(coords,
                                     r_max,
                                     n_bins,
                                     precision="double",
                                     n_threads=n_threads[-1])
         testcase_large = (n_atoms, n_bins, coords, histo_ref)
     return testcase_large
Example #9
0
 def fixture_xlarge():
     global testcase_xlarge
     if testcase_xlarge is None:
         n_atoms = [250000, 275000, 225000]
         n_bins = 18000
         coords = util.generate_random_coordinate_set(n_atoms)
         # --- note that we use pydh to generate the test dataset, max number of threads and no blocking
         histo_ref = pydh.histograms(coords,
                                     r_max,
                                     n_bins,
                                     precision="double",
                                     n_threads=n_threads[-1],
                                     blocksize=-1)
         testcase_xlarge = (n_atoms, n_bins, coords, histo_ref)
     return testcase_xlarge
Example #10
0
def fixture_small_triclinic():
    """Create a triclinic reference case in double precision using pydh."""
    global testcase_small_triclinic
    if testcase_small_triclinic is None:
        n_atoms = [2847, 3918]
        n_bins = 1000
        coords = util.generate_random_coordinate_set(n_atoms)
        box = get_triclinic_box()
        histo = pydh.histograms(coords,
                                r_max,
                                n_bins,
                                box=box,
                                precision="double",
                                n_threads=1)
        testcase_small_triclinic = (n_atoms, n_bins, coords, box, histo)
    return testcase_small_triclinic
Example #11
0
 def get_frame(self, i):
     """Create coordinate data sets for a single frame."""
     # Cadishi and Capriqorn use base.Container() instances to handle data
     frm = base.Container()
     # Generate list of (Nx3) NumPy coordinate arrays.
     # NOTE: This is the location where you would want to feed your own data in!
     # We use random data in this simple example.
     coord_set = util.generate_random_coordinate_set(self.n_objects)
     for idx, coords in enumerate(coord_set):
         # Each species carries a label.
         # NOTE: You need to take care about labels fitting to your data!
         label = "species_" + str(idx)
         # add coordinates to frame at the following standardized location
         location = base.loc_coordinates + '/' + label
         frm.put_data(location, coords.astype(np.float64))
     # finally, each frame is uniquely numbered
     frm.i = i
     return frm
Example #12
0
                bap += old_div(float(n_atoms[i] * n_atoms[j]), 1.e9)
            else:
                if not run_values['histo2']:
                    bap += old_div(
                        float(old_div((n_atoms[j] * (n_atoms[j] - 1)), 2)),
                        1.e9)
    return bap


# ------------------------------------------------------------------------------

if run_values['numa']:
    numa_topology = util.get_numa_domains()
    util.set_numa_domain(0, numa_topology)

coords = util.generate_random_coordinate_set(run_values['size'])

n_bins = run_values['bins']

if run_values['box'].startswith('t'):
    # triclinic dummy box
    box = np.asarray([0.30, 0.32, 0.34, 60., 60., 90.])
elif run_values['box'].startswith('o'):
    # orthorhombic dummy box
    box = np.zeros((3, 3))
    box[0][0] = 0.66
    box[1][1] = 0.68
    box[2][2] = 0.70
else:
    # no box
    box = []