Example #1
0
def print_net_info(model_path, phase, net_params):
    # disable caffe logging
    net = Net(model_path, phase=phase)
    
    # Blobs = Data, net_params.layer = Layers <=> wont be equal
    
    nb_layers = len(net_params.layer)
    print "Net architecture : ", model_path
    print " - layer name (layer type) : (batch size, feature dim, width, height) | number of filters, (filter dim, filter width, filter height), stride, padding"
    counter=0
    for k, v in net.blobs.items():
        params = []
        if k in net.params:
            params = net.params[k][0].data.shape
            padding = None
            stride = None
            layer_type = None
            if nb_layers > 0:
                layer = net_params.layer[counter]
                layer_type = layer.type
                if layer_type == 'Convolution' or layer_type == 'Deconvolution':
                    stride = layer.convolution_param.stride[0] if len(layer.convolution_param.stride._values) else 1
                    padding = layer.convolution_param.pad[0] if len(layer.convolution_param.pad._values) else 0
                elif layer_type == 'Pooling':
                    stride = layer.pooling_param.stride
                    padding = layer.pooling_param.pad
                
            if padding and stride and layer_type is not None:
                print "%s (%s) : %s | %s, %s, stride=%s, padding=%s" %(k, layer_type, v.data.shape, params[0], params[1:], stride, padding) 
            else:
                print "%s : %s | %s, %s" %(k, v.data.shape, params[0], params[1:]) 
        else:
            print "%s : %s" %(k, v.data.shape) 
        counter += 1 
    def build(self, network_filename='inception.prototxt'):
        """main method."""

        network = self._build_network()
        print network
        with open(network_filename, 'w') as network_file:
            network_file.write(text_format.MessageToString(network))
        return Net(network_filename)
Example #3
0
    def build(self):
        """main method."""

        network = self._build_network()
        print network
        network_filename = 'inception.prototxt'
        with open(network_filename, 'w') as network_file:
            network_file.write(text_format.MessageToString(network))
        net = Net(network_filename)
        net.set_phase_test()
        net.set_mode_gpu()

        print net.forward()
  def build_network(self, netname, batchsize=1, numstep=24):
    """main method."""

    if netname == 'rnn':
      network = self._build_rnn_network(batchsize=batchsize, numstep=numstep)
    else:
      print('unknown netname: %s' % netname)
      return

    network_filename = '%s_t%d_finetuning.prototxt' % (netname,numstep)
    print network
    with open(network_filename, 'w') as network_file:
      network_file.write(text_format.MessageToString(network))
    return Net(network_filename)
Example #5
0
def classify(
    image,
    model=_static_file("deploy.prototxt"),
    weights=_static_file("resnet_50_1by2_nsfw.caffemodel"),
):
    """
    Determine the probability that an image is SFW or NSFW.

    Parameters
    ----------
    image   : a PIL ImageFile object

    Keyword Arguments
    -----------------
    These arguments default to Yahoo's open_nsfw defaults. If you have
    your own trained models, you may pass the paths to the `.prototxt` and
    `.caffemodel` files.

    model   : a string path to a Caffe model file (e.g. deploy.prototxt)
    weights : a string path to a Caffe weights file (e.g. caffenet.caffemodel)

    Returns
    -------
    (sfw, nsfw) : a tuple with SFW and NSFW probabilities
    """

    net = Net(model, 1, weights=weights)

    transformer = Transformer({
        "data": net.blobs["data"].data.shape
    })
    # Move image channels to outermost
    transformer.set_transpose("data", (2, 0, 1))
    # Subtract the dataset-mean value in each channel
    transformer.set_mean("data", numpy.array([104, 117, 123]))
    # Rescale from [0, 1] to [0, 255]
    transformer.set_raw_scale("data", 255)
    # Swap channels from RGB to BGR
    transformer.set_channel_swap("data", (2, 1, 0))

    sfw, nsfw = _process(_resize(image), net=net, transformer=transformer)

    return (sfw, nsfw)
Example #6
0
        X = np.rollaxis(bottom[0].data, 1, 4)
        batch_size, h, w, _ = X.shape
        num_p = h * w
        BY = bottom[1].data
        BY[:, 1:5] /= self.scale
        obj_score, Y, gt_class = process(X, BY)
        top[0].data[...] = obj_score
        top[1].data[...] = Y
        top[2].data[...] = gt_class

    def backward(self, top, propagate_down, bottom):
        pass


if __name__ == '__main__':
    from caffe import Net, TRAIN
    import cv2
    net = Net('od2.pt', 'od_train_iter_62692.caffemodel', TRAIN)
    for count in range(100):
        net.forward()
        Bx, score = reconstruct(net.blobs['bbox'].data,
                                net.blobs['obj_score'].data,
                                net.blobs['label'].data)
        img = visualize('data/pvtdb/VOC2007/JPEGImages/%06d.jpg' % count, \
                  Bx, net.blobs['data'].data, 32)
        cv2.imshow('%06d.jpg' % count, img)
        key = cv2.waitKey(0)
        cv2.destroyAllWindows()
        if key == 27:
            break
Example #7
0
      By = gt_boxes[gt_boxes[:,0] == n, 1:5]
      IOU = iou(Bx, By)
      print IOU.max(axis=0)
  return (Bx, score)

def visualize(filename, Bx, data, scale):
  img = data[0].copy()
  img[0] += 103
  img[1] += 116
  img[2] += 123
  img = np.array(np.rollaxis(img, 0, 3), \
                 dtype=np.uint8).copy()
  for bx in Bx * scale:
    cv2.rectangle(img, (bx[0], bx[1]), (bx[2], bx[3]), \
                  (0, 0, 255), 2)
  return img

if __name__ == '__main__':
  from caffe import Net, TRAIN
  net = Net('caffe-materials/practice6/net-test.pt', 'caffe-materials/practice6/net_trained.cm', TRAIN)
  for count in range(100):
    net.forward()
    Bx, score = reconstruct(net.blobs['bbox'].data, net.blobs['obj_score'].data, net.blobs['label'].data)
    img = visualize('data/pvtdb/VOC2007/JPEGImages/%06d.jpg' % count, \
              Bx, net.blobs['data'].data, 32)
    cv2.imshow('%06d.jpg' % count, img)
    key = cv2.waitKey(0)
    cv2.destroyAllWindows()
    if key == 27:
      break
Example #8
0
#! python
#coding=utf-8

import os, sys

caffe_root = '/data/darwin-caffe-base/'  # caffe的根目录
os.chdir(caffe_root)  #os.chdir()用于改变当前工作目录到指定的路径
sys.path.insert(0, caffe_root + 'python')

from caffe import Net, TEST
import caffe

import numpy as np

net = Net('/data/mgn_caffe/resnet50/ResNet-50-deploy.prototxt',
          '/data/mgn_caffe/resnet50/ResNet-50-model.caffemodel', caffe.TEST)
netNew = Net('/data/mgn_caffe/resnet50/ResNet-50-deploy-3.prototxt',
             caffe.TEST)

for k1, v1 in netNew.params.items():
    for k, v in net.params.items():
        #print (k, v[0].data.shape)
        #print np.size(net.params[k])
        for i in range(np.size(net.params[k])):
            if (k1 == k + '_3'):
                print(k1)
                netNew.params[k1][i].data[:] = np.copy(
                    net.params[k][i].data[:])
        for i in range(np.size(net.params[k])):
            if (k1 == k):
                print(k1)
Example #9
0
        imageToTest = cv.resize(oriImg, (0, 0),
                                fx=scale,
                                fy=scale,
                                interpolation=cv.INTER_CUBIC)
        imageToTest_padded, pad = util.padRightDownCorner(
            imageToTest, model['stride'], model['padValue'])
        print(imageToTest_padded.shape)

        net.blobs['data'].reshape(*(1, 3, imageToTest_padded.shape[0],
                                    imageToTest_padded.shape[1]))
        # net.forward() # dry run
        net.blobs['data'].data[...] = np.transpose(
            np.float32(imageToTest_padded[:, :, :, np.newaxis]),
            (3, 2, 0, 1)) / 256 - 0.5
        start_time = time.time()
        output_blobs = net.forward()
        print('At scale %d, The CNN took %.2f ms.' %
              (m, 1000 * (time.time() - start_time)))

        # extract outputs, resize, and remove padding
        heatmap = np.transpose(
            np.squeeze(net.blobs[list(output_blobs.keys())[1]].data),
            (1, 2, 0))  # output 1 is heatmaps
        heatmap = cv.resize(heatmap, (0, 0),
                            fx=model['stride'],
                            fy=model['stride'],
                            interpolation=cv.INTER_CUBIC)
        heatmap = heatmap[:imageToTest_padded.shape[0] -
                          pad[2], :imageToTest_padded.shape[1] - pad[3], :]
        heatmap = cv.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]),
                            interpolation=cv.INTER_CUBIC)
Example #10
0
def visualize(filename, Bx, data, scale):
    img = data[0].copy()
    img[0] += 103
    img[1] += 116
    img[2] += 123
    img = np.array(np.rollaxis(img, 0, 3), \
                   dtype=np.uint8).copy()
    for bx in Bx * scale:
        cv2.rectangle(img, (bx[0], bx[1]), (bx[2], bx[3]), \
                      (0, 0, 255), 2)
    return img


if __name__ == '__main__':
    from caffe import Net, TRAIN
    net = Net('caffe-materials/practice6/net-test.pt',
              'caffe-materials/practice6/net_trained.cm', TRAIN)
    for count in range(100):
        net.forward()
        Bx, score = reconstruct(net.blobs['bbox'].data,
                                net.blobs['obj_score'].data,
                                net.blobs['label'].data)
        img = visualize('data/pvtdb/VOC2007/JPEGImages/%06d.jpg' % count, \
                  Bx, net.blobs['data'].data, 32)
        cv2.imshow('%06d.jpg' % count, img)
        key = cv2.waitKey(0)
        cv2.destroyAllWindows()
        if key == 27:
            break
Example #11
0
#! python
#coding=utf-8
import sys
from caffe import Net

caffe_root = your / caffe / root
sys.path.insert(0, caffe_root + 'python')

n_orig = Net('orig_model.prototxt', 'orig_model.caffemodel', 0)
n_new = Net('new_model.prototxt', 'orig_model.caffemodel', 0)
for orig_name in n_orig.params:
    #n_new.params[orig_name + '_p'] = n_orig.params[orig_name]
    n_new.params[new_name] = n_orig.params[orig_name]
n_new.save('new_model.caffemodel')