def build_pipeline(node_id): with Node('trainer_%d' % node_id): with Job.current().init_group, Task(): data_arr = Struct(('val', np.array(list(range(10))))) data = ConstRecord(ops, data_arr) ds = Dataset(data, name='dataset:%d' % node_id) full_reader = ds.reader(ops) total = ops.Const([100]) def inc_total(rec): ops.Add([total, rec.val()], [total]) epoch_reader = ReaderWithLimit(full_reader, num_iter=3) pipe(epoch_reader, processor=inc_total) Job.current().add_stop_signal(epoch_reader.data_finished()) return [total]
def test_upload_checkpoint(self): try: tmpdir = tempfile.mkdtemp() upload_dir = os.path.join(tmpdir, "upload") os.mkdir(upload_dir) num_nodes = 3 # The uploaded files do not exist yet. for node_id in range(num_nodes): node_name = 'trainer_%d' % node_id upload_path = os.path.join(upload_dir, node_name) self.assertFalse(os.path.exists(upload_path)) # Create and run the job runner. for node_id in range(3): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) job.compile(LocalSession) local_upload_builder = UploadToLocalFile(upload_dir) job_runner = JobRunner( job, checkpoint, upload_task_group_builder=local_upload_builder) num_epochs = job_runner.train(session) self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) # The uploaded files should exist now. for node_id in range(num_nodes): node_name = 'trainer_%d' % node_id upload_path = os.path.join(upload_dir, node_name) self.assertTrue(os.path.exists(upload_path)) finally: shutil.rmtree(tmpdir)
def test_ckpt_save_failure(self): num_nodes = 3 # The goal of this test is to ensure that the job runs # successfully even if saving a checkpoint fails. # Hence tmpdir is a non existent directory to emulate a failure # while saving checkpoints tmpdir = "/tmp/path_does_not_exist/" # Check the saving checkpoint failure does not cause job failure workspace.ResetWorkspace() for node_id in range(num_nodes): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) num_epochs = job_runner(session) # make sure all epochs are executed even though saving the checkpoint failed # Saving checkpoint failure should not cause job failure self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
def build_job(): with Node('reader'): with Job() as job: with job.init_group: init_net = core.Net('init_net') data_arr = Struct(('val', np.array(range(10)))) data = ConstRecord(init_net, data_arr) ds = Dataset(data) full_reader = ds.reader(init_net) total = init_net.Const([100]) Task(step=init_net) def inc_total(rec): net = core.Net('inc_total') net.Add([total, rec.val()], [total]) return [net] epoch_reader = ReaderWithLimit(full_reader, num_iter=3) pipe(epoch_reader, processor=inc_total) job.add_stop_signal(epoch_reader.data_finished()) total_fetcher = Task(step=core.Net('empty'), outputs=[total]) return job, total_fetcher
def test_ckpt_name_and_load_model_from_ckpts(self): try: num_nodes = 3 tmpdir = tempfile.mkdtemp() # First, check if the checkpoint name generation mechanism is # correct. checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: for node_id in range(num_nodes): build_pipeline(node_id) compiled_job = job.compile(LocalSession) checkpoint.init(compiled_job.nodes_to_checkpoint()) for node_id in range(num_nodes): epoch = 5 node_name = 'trainer_%d' % node_id expected_db_name = tmpdir + '/' + node_name + '.5' self.assertEquals( checkpoint.get_ckpt_db_name(node_name, epoch), expected_db_name) shutil.rmtree(tmpdir) # Next, check mechanism to load model from checkpoints. tmpdir = tempfile.mkdtemp() workspace.ResetWorkspace() for node_id in range(num_nodes): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) num_epochs = job_runner(session) self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) # There are 12 global blobs after finishing up the job runner. # (only blobs on init_group are checkpointed) self.assertEquals(len(ws.blobs), 12) ws = workspace.C.Workspace() session = LocalSession(ws) self.assertEquals(len(ws.blobs), 0) model_blob_names = ['trainer_1/task_2/GivenTensorInt64Fill:0', 'trainer_2/task_2/GivenTensorInt64Fill:0'] checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: for node_id in range(num_nodes): build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=1, session=session) # Check that we can successfully load from checkpoints of epochs # 1 to 4, but not epoch 5. for epoch in range(1, 5): self.assertTrue( job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=epoch, session=session)) # Check that all the model blobs are loaded. for blob_name in model_blob_names: self.assertTrue(ws.has_blob(blob_name)) self.assertEquals( ws.fetch_blob(blob_name), np.array([EXPECTED_TOTALS[epoch - 1]])) self.assertFalse( job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=5, session=session)) finally: shutil.rmtree(tmpdir)
def example_job(): with Job() as job: with job.init_group: example_loop() example_task() return job