Example #1
0
def test(nnName, dataName, epsilon, temperature):
    """
    :param nnName: in-distribution
    :param dataName: out-of-distribution
    :param epsilon: noiseMagnitude
    :param temperature: scaling
    """
    print("--start testing!--")
    net1 = cifar10vgg(train=False).model

    if nnName == "densenet10":
        (x_train, y_train), (x_test,
                             y_test) = tf.keras.datasets.cifar10.load_data()
        # testloaderIn=x_train[:10000]
        testloaderIn = x_train[:10000]
    if dataName == "Imagenet_crop":
        # (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()
        testloaderOut = load_images_from_folder("./Imagenet/test")

    if dataName == "CIFAR-100":
        (_, _), (testloaderOut, _) = tf.keras.datasets.cifar100.load_data()

    if dataName == "Gaussian":
        testloaderOut = np.random.standard_normal(
            size=testloaderIn.shape) + 0.5
    if dataName == "Uniform":
        testloaderOut = np.random.uniform(0, 1, size=testloaderIn.shape)

    testloaderIn, testloaderOut = normalize(testloaderIn, testloaderOut)
    testloaderIn = (testloaderIn, y_train[:10000])

    d.testData(net1, testloaderIn, testloaderOut, nnName, dataName, epsilon,
               temperature)
    m.metric(nnName, dataName, temperature, epsilon)
Example #2
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    model = DenseNetBC_50_12()
    model.load_state_dict(torch.load("../models/{}.pth".format(nnName)))
    # checkpoint = torch.load("../checkpoints_healthy/{}.pth.tar".format(nnName))
    # model.load_state_dict(checkpoint['state_dict'])
    # optimizer.load_state_dict(checkpoint['optimizer'])
    optimizer1 = optim.SGD(model.parameters(), lr=0, momentum=0)

    for i, (name, module) in enumerate(model._modules.items()):
        module = recursion_change_bn(model)
    model.cuda(CUDA_DEVICE)

    transform_test = transforms.Compose(
        [transforms.Resize((512, 512)),
         transforms.ToTensor()])

    testsetout = torchvision.datasets.ImageFolder(
        "/home/yoon/jyk416/odin-pytorch/data/{}".format(dataName),
        transform=transform_test)
    testloaderOut = torch.utils.data.DataLoader(testsetout,
                                                batch_size=1,
                                                shuffle=False,
                                                num_workers=2)

    # if dataName != "Uniform" and dataName != "Gaussian":
    #     testsetout = torchvision.datasets.ImageFolder("../data/{}".format(dataName), transform=transform)
    #     testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=1,
    #                                                 shuffle=False, num_workers=2)

    train_test_dir = '/home/yoon/jyk416/odin-pytorch/data/train3'
    if nnName == "model104":
        testset = torchvision.datasets.ImageFolder(train_test_dir,
                                                   transform=transform_test)
        testloaderIn = torch.utils.data.DataLoader(testset,
                                                   batch_size=1,
                                                   shuffle=True,
                                                   num_workers=2)

    # if nnName == "densenet10" or nnName == "wideresnet10":
    #     testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform)
    #     testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
    #                                                shuffle=False, num_workers=2)
    # if nnName == "densenet100" or nnName == "wideresnet100":
    #     testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform)
    #     testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
    #                                                shuffle=False, num_workers=2)

    # if dataName == "Gaussian":
    #     d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
    #     m.metric(nnName, dataName)
    #
    # elif dataName == "Uniform":
    #     d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
    #     m.metric(nnName, dataName)
    # else:
    #     d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut, nnName, dataName, epsilon, temperature)
    #     m.metric(nnName, dataName)
    d.testData(model, criterion, CUDA_DEVICE, testloaderIn, testloaderOut,
               nnName, epsilon, temperature)
    m.metric(nnName, dataName)
Example #3
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    
    net1 = torch.load("../models/{}.pth".format(nnName))
    optimizer1 = optim.SGD(net1.parameters(), lr = 0, momentum = 0)
    net1.cuda(CUDA_DEVICE)
    
    if dataName != "Uniform" and dataName != "Gaussian":
        testsetout = torchvision.datasets.ImageFolder("../data/{}".format(dataName), transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=1,
                                         shuffle=False, num_workers=2)

    if nnName == "densenet10" or nnName == "wideresnet10": 
	testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    if nnName == "densenet100" or nnName == "wideresnet100": 
	testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    
    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
	d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut, nnName, dataName, epsilon, temperature) 
	m.metric(nnName, dataName)
Example #4
0
 def detect_ood_odin(self,
                     gpu,
                     nnName="model",
                     epsilon=0.0014,
                     temperature=1000):
     net1 = self.model
     testloaderIn = torch.utils.data.DataLoader(self.in_distribution,
                                                batch_size=1,
                                                shuffle=False,
                                                num_workers=2)
     testloadersOut = []
     for dataset in self.out_of_distribution:
         testloadersOut.append(
             torch.utils.data.DataLoader(dataset,
                                         batch_size=1,
                                         shuffle=False,
                                         num_workers=2))
     net1.cuda(gpu)
     d.testData(net1, torch.nn.CrossEntropyLoss(), gpu, testloaderIn,
                testloadersOut, nnName, self.data_lables[0], epsilon,
                temperature)
     m.metric(nnName, self.data_lables[0])
Example #5
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    net1 = vgg1.VGG('VGG16').to(device)
    # Test set: Average loss: 0.0015, Accuracy: 9337 / 10000(93 %)

    if use_cuda:
        net1 = torch.nn.DataParallel(net1)
        cudnn.benchmark = True

    checkpoint = torch.load("../../model/{}.pth".format(nnName))
    net1.load_state_dict(checkpoint['net'])
    net1.eval()

    if dataName != "Uniform" and dataName != "Gaussian":
        testsetout = torchvision.datasets.ImageFolder(
            "../../data/{}".format(dataName), transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout,
                                                    batch_size=1,
                                                    shuffle=False,
                                                    num_workers=2)

    # if nnName == "densenet10" or nnName == "wideresnet10":
    testset = torchvision.datasets.CIFAR10(root='../../data',
                                           train=False,
                                           download=True,
                                           transform=transform)
    testloaderIn = torch.utils.data.DataLoader(testset,
                                               batch_size=1,
                                               shuffle=False,
                                               num_workers=2)
    # if nnName == "densenet100" or nnName == "wideresnet100":
    #     testset = torchvision.datasets.CIFAR100(root='../../data', train=False, download=True, transform=transform)
    #     testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
    #                                                shuffle=False, num_workers=2)

    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn,
                       testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn,
                  nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
        d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut,
                   nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
Example #6
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    
    net1 = torch.load("../models/{}.pth".format(nnName))
    optimizer1 = optim.SGD(net1.parameters(), lr = 0, momentum = 0)
    net1.cuda(CUDA_DEVICE)
    
    if dataName != "Uniform" and dataName != "Gaussian":
        if dataName == "SVHN":
            testsetout = svhn.SVHN("../data/SVHN", split='test', transform=transform, download=True)
        elif dataName in ["HFlip","VFlip"]:
            testsetout = torchvision.datasets.CIFAR10('../data', train=False, download=True, 
                                                       transform=Flip[dataName])
        elif dataName == "CelebA":
            testsetout = torchvision.datasets.ImageFolder(
                "../data/{}".format(dataName), 
                transform=transforms.Compose([transforms.CenterCrop(178), Resize(32), transform]))
        else:
            testsetout = torchvision.datasets.ImageFolder("../data/{}".format(dataName), 
                                                          transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=1,
                                         shuffle=False, num_workers=2)

    if nnName == "densenet10" or nnName == "wideresnet10": 
	testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    if nnName == "densenet100" or nnName == "wideresnet100": 
	testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    
    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
	d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut, nnName, dataName, epsilon, temperature) 
	m.metric(nnName, dataName)
Example #7
0
def odin(args):
    # args              : (defaults)
    # 1) in_dataset     : CIFAR10
    # 2) out_dataset    : CIFAR100
    # 3) nn             : Densenet_BC
    # 4) magnitude      : 0.
    # 5) temperature    : 1000
    # 6) gpu            : 0
    # 7) tuning         : True
    # 8) training       : False

    criterion = nn.CrossEntropyLoss()

    in_dataset = args.in_dataset
    out_dataset = args.out_dataset
    target_dataset = args.target_dataset
    NNModels = args.nn
    magnitude = args.magnitude
    temperature = args.temperature
    CUDA_DEVICE = args.gpu
    TUNING = args.tuning
    Training = args.training

    ##### Pretrained model setting #####
    model_name = in_dataset + '_' + NNModels
    adapted_model_name = args.train_mode + '_' + 'to' + '_' + args.target_dataset + '_' + 'final.ckpt'
    model = globals()[model_name]()  # only model module is imported
    modelpath = './workspace/model_ckpts/' + model_name + '/'

    ##### Datamodule setting #####
    if args.in_num != 1:
        in_dm = globals()[in_dataset + target_dataset + 'DataModule'](
            TUNING=TUNING, Training=Training, batch_size=1)
        out_dm = globals()[out_dataset + 'DataModule'](TUNING=TUNING,
                                                       Training=Training,
                                                       batch_size=1)
    else:
        # train_mode에 상관없이 in-dist 에 들어가는 dataset의 개수가 1개인 경우
        in_dm = globals()[in_dataset + 'DataModule'](TUNING=TUNING,
                                                     Training=Training,
                                                     batch_size=1)
        out_dm = globals()[out_dataset + 'DataModule'](TUNING=TUNING,
                                                       Training=Training,
                                                       batch_size=1)

    os.makedirs(modelpath, exist_ok=True)
    checkpoint_callback = ModelCheckpoint(filepath=modelpath +
                                          adapted_model_name)
    trainer = Trainer(checkpoint_callback=checkpoint_callback,
                      gpus=1,
                      num_nodes=1,
                      max_epochs=1)
    if os.path.isfile(modelpath + adapted_model_name):
        DANN_ = DANN(None, model, args.train_mode)
        model = DANN_.load_from_checkpoint(modelpath + adapted_model_name,
                                           model, args.train_mode)
    else:
        print('No pretrained model.', 'Execute train.py first', sep='\n')
        return 0

    ##### Softmax Scores Path Setting #####
    path = './workspace/softmax_scores/'
    os.makedirs(path, exist_ok=True)

    ##### distribution saver path Setting #####
    result_path = './OOD_method/distribution_result/' + args.train_mode + '/' + args.in_dataset + str(
        args.in_num) + args.out_dataset + '/'
    os.makedirs(result_path, exist_ok=True)

    T_candidate = [1, 10, 100, 1000]
    e_candidate = [
        0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2
    ]

    if TUNING:
        temperature = T_candidate
        magnitude = e_candidate
    else:
        # Make float/int object iterable
        temperature = [args.temperature]
        magnitude = [args.magnitude]

    tnr_best = 0.
    T_temp = 1
    ep_temp = 0
    for T in temperature:
        for ep in magnitude:
            print('T       : ', T)
            print('epsilon : ', ep)
            ##### Open files to save confidence score #####
            f1 = open(path + "confidence_Base_In.txt", 'w')
            f2 = open(path + "confidence_Base_Out.txt", 'w')
            g1 = open(path + "confidence_Odin_In.txt", 'w')
            g2 = open(path + "confidence_Odin_Out.txt", 'w')
            if out_dataset == "Gaussian":
                calMetric.metric(path)
            elif out_dataset == "Uniform":
                calMetric.metric(path)
            else:
                # setting in-dist detector
                detector = ODIN(model, criterion, CUDA_DEVICE, ep, T, f1, g1)
                trainer.fit(detector, datamodule=in_dm)
                # setting out-dist detector
                detector = ODIN(model, criterion, CUDA_DEVICE, ep, T, f2, g2)
                trainer.fit(detector, datamodule=out_dm)
                # calculate metrics
                results = calMetric.metric(path)
                if tnr_best < results['Odin']['TNR']:
                    tnr_best = results['Odin']['TNR']
                    results_best = results
                    T_temp = T
                    ep_temp = ep
            f1.close()
            f2.close()
            g1.close()
            g2.close()

    if TUNING:
        TUNING = False  # Tuning Ended. run calMetric with rest 9,000 data with min(T,ep)
        print('\nBest Performance Out-of-Distribution Detection')
        print('T       : ', T_temp)
        print('epsilon : ', ep_temp)
        f1 = open(path + "confidence_Base_In.txt", 'w')
        f2 = open(path + "confidence_Base_Out.txt", 'w')
        g1 = open(path + "confidence_Odin_In.txt", 'w')
        g2 = open(path + "confidence_Odin_Out.txt", 'w')
        in_dm = globals()[in_dataset + 'DataModule'](TUNING=TUNING,
                                                     Training=Training,
                                                     batch_size=1)
        out_dm = globals()[out_dataset + 'DataModule'](TUNING=TUNING,
                                                       Training=Training,
                                                       batch_size=1)
        detector = ODIN(model, criterion, CUDA_DEVICE, ep_temp, T_temp, f1, g1)
        trainer.fit(detector, datamodule=in_dm)
        detector = ODIN(model, criterion, CUDA_DEVICE, ep_temp, T_temp, f2, g2)
        trainer.fit(detector, datamodule=out_dm)
        results_best = calMetric.metric(path)
        f1.close()
        f2.close()
        g1.close()
        g2.close()

    save_histogram(path, result_path)

    print('\nBest Performance Out-of-Distribution Detection')
    print('T       : ', T_temp)
    print('epsilon : ', ep_temp)
    print("{:31}{:>22}".format("Neural network architecture:", NNModels))
    print("{:31}{:>22}".format("In-distribution dataset:", in_dataset))
    print("{:31}{:>22}".format("Out-of-distribution dataset:", out_dataset))
    print("")
    print("{:>34}{:>19}".format("Baseline", "Odin"))
    print("{:20}{:13.1f}%{:>18.1f}% ".format(
        "TNR at TPR 95%:", results_best['Base']['TNR'] * 100,
        results_best['Odin']['TNR'] * 100))
    print("{:20}{:13.1f}%{:>18.1f}%".format(
        "Accuracy:", results_best['Base']['DTACC'] * 100,
        results_best['Odin']['DTACC'] * 100))
    print("{:20}{:13.1f}%{:>18.1f}%".format(
        "AUROC:", results_best['Base']['AUROC'] * 100,
        results_best['Odin']['AUROC'] * 100))
    print("{:20}{:13.1f}%{:>18.1f}%".format(
        "AUPR In:", results_best['Base']['AUIN'] * 100,
        results_best['Odin']['AUIN'] * 100))
    print("{:20}{:13.1f}%{:>18.1f}%".format(
        "AUPR Out:", results_best['Base']['AUOUT'] * 100,
        results_best['Odin']['AUOUT'] * 100))