def get_preproc_image(): data_params = Data.default_params() data_params.skip_invalid_gt = False data_params.pre_proc.run_parallel = False data_params.pre_proc.processors = data_params.pre_proc.processors[:-1] for p in data_params.pre_proc.processors_of_type(FinalPreparationProcessorParams): p.pad = 0 post_init(data_params) pl = Data(data_params).create_pipeline(DataPipelineParams, None) pl.mode = PipelineMode.PREDICTION preproc = data_params.pre_proc.create(pl) def pp(image): its = InputSample( image, None, SampleMeta("001", fold_id="01") ).to_input_target_sample() s = preproc.apply_on_sample(its) return s.inputs return pp
def get_preproc_text(rtl=False): data_params = Data.default_params() data_params.skip_invalid_gt = False data_params.pre_proc.run_parallel = False if rtl: for p in data_params.pre_proc.processors_of_type(BidiTextProcessorParams): p.bidi_direction = BidiDirection.RTL post_init(data_params) pl = Data(data_params).create_pipeline(DataPipelineParams, None) pl.mode = PipelineMode.TARGETS preproc = data_params.pre_proc.create(pl) def pp(text): its = InputSample( None, text, SampleMeta("001", fold_id="01") ).to_input_target_sample() s = preproc.apply_on_sample(its) return s.targets return pp