def gradients(self, frameids=None, static=True, moving=True, time=None):
        """
        function determines all gradients within view distance
        :param frameids: frame IDs to be considered looking for gradients, None considers all frameids.
        :param static: consider static gradients
        :param moving: consider moving gradients
        :param time: optional time stamp for evaporation calculations, if None time=rospy.Time.now()
        :return: list of gradients []
        """
        if not self.ev_thread:
            self._evaporate_buffer(time=time)

        gradients = []

        # if view distance is infinite, return list of all gradients
        if self._view_distance == np.inf:
            return self.all_gradients(frameids, static, moving)

        # determine frames to consider
        if not frameids:
            frameids = []
            if static:
                frameids += self._static.keys()
            if moving:
                frameids += self._moving.keys()

        pose = self.get_last_position()

        # no own position available
        if pose is None:
            return gradients

        if static:
            staticbuffer = copy.deepcopy(self._static)
        if moving:
            movingbuffer = copy.deepcopy(self._moving)

        for fid in frameids:
            # static gradients
            if static and fid in staticbuffer.keys():
                for element in staticbuffer[fid]:
                    if calc.get_gradient_distance(element.p, pose.p) <= \
                                            element.diffusion + \
                                            element.goal_radius + \
                                    self._view_distance:
                        gradients.append(element)

            # moving gradients
            if moving and fid in movingbuffer.keys() \
                    and movingbuffer[fid]:
                for pid in movingbuffer[fid].keys():
                    if movingbuffer[fid][pid]:
                        element = movingbuffer[fid][pid][-1]
                        if calc.get_gradient_distance(element.p, pose.p) \
                            <= element.diffusion + element.goal_radius + \
                            self._view_distance:
                            gradients.append(element)

        return gradients
def calc_repulsive_gradient_ge(gradient, goal, pose):
    """
    calculation of movement vector based on repulsive gradient and
    goal gradient
    :param gradient: repulsive gradient message
    :param goal: attractive gradient message (goal)
    :param pose: position SoMessage of the robot
    :return: movement vector
    distance of influence of obstacle = goal_radius + diffusion
    """
    v = Vector3()

    # distance obstacle - agent
    tmp = calc.delta_vector(pose.p, gradient.p)

    # shortest distance considered (goal_radius of agent == size of agent)
    d = np.linalg.norm([tmp.x, tmp.y, tmp.z]) - pose.goal_radius \
        - gradient.goal_radius

    if d <= 0:
        v = Vector3(np.inf, np.inf, np.inf)
        # calculate norm vector for direction
        tmp = calc.unit_vector3(tmp)

        # calculate repulsion vector - adjust sign/direction
        if tmp.x != 0.0:
            v.x *= tmp.x
        if tmp.y != 0.0:
            v.y *= tmp.y
        if tmp.z != 0.0:
            v.z *= tmp.z
    elif 0 < d <= gradient.diffusion:
        # unit vector obstacle - agent
        tmp = calc.unit_vector3(tmp)
        # distance agent - goal
        d_goal = calc.get_gradient_distance(pose.p, goal.p) - \
                 pose.goal_radius - goal.goal_radius
        # unit vector agent - goal
        ag = calc.delta_vector(goal.p, pose.p)
        ag = calc.unit_vector3(ag)
        # closest distance to obstacle  - diffusion
        d_obs_diff = (1.0 / d) - (1.0 / gradient.diffusion)
        # parameters
        n = 1.0
        eta = 1.0
        # weighting rep1 and rep2
        f_rep1 = eta * d_obs_diff * ((d_goal**n) / (d**n))
        f_rep2 = eta * (n / 2.0) * np.square(d_obs_diff) * (d_goal**(n - 1))
        v.x = f_rep1 * tmp.x + f_rep2 * ag.x
        v.y = f_rep1 * tmp.y + f_rep2 * ag.y
        v.z = f_rep1 * tmp.z + f_rep2 * ag.z

    elif d > gradient.diffusion:
        v = Vector3()

    return v
Example #3
0
    def move(self):
        """
        calculates repulsion vector based on Fernandez-Marquez
        :return: repulsion movement vector
        """

        pose = self._buffer.get_own_pose()
        view = self._buffer.agent_list(self.frames)

        mov = None

        if pose and view:
            repulsion_radius = pose.diffusion + pose.goal_radius
            mov = Vector3()

            for el in view:
                distance = calc.get_gradient_distance(el.p, pose.p) \
                           - el.goal_radius

                if distance <= self._buffer.view_distance:

                    if distance > 0:
                        diff = repulsion_radius - distance
                        mov.x += (pose.p.x - el.p.x) * diff / distance
                        mov.y += (pose.p.y - el.p.y) * diff / distance
                        mov.z += (pose.p.z - el.p.z) * diff / distance

                    # enhancement of formulas to cover case when gradients are
                    # collided (agent is in goal radius of neighbor)
                    elif distance <= 0:
                        # create random vector with length=repulsion radius
                        if distance == - el.goal_radius:
                            mov = calc.add_vectors(mov, calc.random_vector(
                                repulsion_radius))
                        # use direction leading away if available
                        else:
                            mov = calc.add_vectors(mov, calc.adjust_length(
                                calc.delta_vector(pose.p, el.p),
                                repulsion_radius))

            if not mov:
                return None

            if calc.vector_length(mov) > repulsion_radius:
                mov = calc.adjust_length(mov, repulsion_radius)

        return mov
    def agent_set(self, frameids=None, include_own=True, time=None):
        """
        function determines all moving gradients within view distance with a
        certain frame ID, excluding all gradients from agent itself
        :param frame: frame ID of agent data
        :param time: optional time stamp for evaporation calculations, if None time=rospy.Time.now()
        :return: list of gradients
        """
        if not self.ev_thread:
            self._evaporate_buffer(time=time)

        gradients = []

        pose = self.get_last_position()

        # no own position available
        if pose is None:
            return gradients

        # determine frames to consider
        if not frameids:
            frameids = self._moving.keys()

        moving = self._moving
        moving_keys = moving.keys()

        for frame in frameids:

            if frame in moving_keys and moving[frame]:

                moving_frame_keys = moving[frame].keys()
                for pid in moving_frame_keys:

                    if (include_own or pid != self._id) and moving[frame][pid]:

                        for g in moving[frame][pid]:

                            if calc.get_gradient_distance(g.p, pose.p) <= \
                                    g.diffusion + g.goal_radius + self._view_distance:

                                gradients.append(g)

        return gradients
    def agent_list(self, frameids=None, time=None):
        """
        function determines all moving gradients within view distance with a
        certain frame ID, excluding all gradients from agent itself
        :param frame: frame ID of agent data
        :param moving: consider moving gradients
        :param time: optional time stamp for evaporation calculations, if None time=rospy.Time.now()
        :return: list of gradients
        """
        if not self.ev_thread:
            self._evaporate_buffer(time=time)

        gradients = []

        pose = self.get_last_position()

        # no own position available
        if pose is None:
            return gradients

        # determine frames to consider
        if not frameids:
            frameids = self._moving.keys()

        moving = copy.deepcopy(self._moving)

        for frame in frameids:
            if frame in moving.keys() and moving[frame]:
                for pid in moving[frame].keys():
                    if pid != self._id and moving[frame][pid]:
                        if calc.get_gradient_distance(moving[frame][pid][-1].p,
                                                      pose.p) \
                                <= moving[frame][pid][-1].diffusion + \
                                   moving[frame][pid][-1].goal_radius + \
                                   self._view_distance:
                            gradients.append(moving[frame][pid][-1])

        return gradients
    def attractive_gradients(self,
                             frameids=None,
                             static=True,
                             moving=True,
                             time=None):
        """
        function determines which attractive gradients are currently within
         view distance
        :param frameids: frame IDs to be considered looking for attractive
                         gradients
        :param static: consider static gradients
        :param moving: consider moving gradients
        :param time: optional time stamp for evaporation calculations, if None time=rospy.Time.now()
        :return: list of attractive gradients within view distance
        """
        # check if moving and / or static attractive gradients are
        # within view distance
        if not self.ev_thread:
            self._evaporate_buffer(time=time)

        gradients_attractive = []

        pose = self.get_last_position()

        if pose is None:
            return gradients_attractive

        # determine frames to consider
        if not frameids:
            frameids = []
            if static:
                frameids += self._static.keys()
            if moving:
                frameids += self._moving.keys()

        if static:
            staticbuffer = copy.deepcopy(self._static)
        if moving:
            movingbuffer = copy.deepcopy(self._moving)

        for fid in frameids:
            # static gradients
            if static and fid in staticbuffer.keys():
                for element in staticbuffer[fid]:
                    if calc.get_gradient_distance(element.p, pose.p) <= \
                                            element.diffusion + \
                                            element.goal_radius + \
                                    self._view_distance:
                        if element.attraction == 1:
                            gradients_attractive.append(element)

            # moving gradients
            if moving and fid in movingbuffer.keys():
                for pid in movingbuffer[fid].keys():
                    if movingbuffer[fid][pid]:
                        element = movingbuffer[fid][pid][-1]
                        if calc.get_gradient_distance(element.p, pose.p) \
                            <= element.diffusion + element.goal_radius + \
                            self._view_distance:
                            if element.attraction == 1:
                                gradients_attractive.append(element)

        return gradients_attractive
    def store_static(self, msg):
        """
        method to store static gradients
        :param msg: received SoMessage
        """
        # set aggregation option
        aggregation = self.aggregation_option(msg.header.frame_id)
        if aggregation is None:
            return

        if msg.header.frame_id in self._static:

            # aggregation based on parent frame
            if aggregation == AGGREGATION.NEWPARENT:
                self.aggregation_newparent(msg)
            elif aggregation == AGGREGATION.NEWFRAME:
                self.aggregation_newframe(msg)

            # aggregation based on position
            else:
                # indicates whether data point at same position / within
                # aggregation radius is already stored
                view = {}

                # find all points which are in aggregation range of message
                for i in xrange(
                        len(self._static[msg.header.frame_id]) - 1, -1, -1):
                    distance = calc.get_gradient_distance(
                        self._static[msg.header.frame_id][i].p, msg.p)
                    # data point lies within aggregation distance
                    if distance <= self._aggregation_distance:
                        view[i] = distance

                # find minimum distance to gradient centers within aggregation
                # distance
                if view:
                    min_val = min(view.values())  # get minimum distance
                    result = [j for j, v in view.items() if v == min_val]

                    # several with same distance - random value of list
                    if len(result) > 1:
                        k = random.choice(result)
                    # only one minimum - use found index
                    else:
                        k = result[0]

                    # keep data with max reach
                    if aggregation == AGGREGATION.MAX:
                        self.aggregation_max(msg, k)
                    # keep data with min reach
                    elif aggregation == AGGREGATION.MIN:
                        self.aggregation_min(msg, k)
                    # keep average gradient
                    elif aggregation == AGGREGATION.AVG:
                        self.aggregation_average(msg, k)
                    # keep last received gradient at one position
                    elif aggregation == AGGREGATION.NEW:
                        self.aggregation_new(msg, k)
                else:
                    self._static[msg.header.frame_id].append(msg)
        else:
            self._static[msg.header.frame_id] = [msg]